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Organizational problem solving – the pooling of individual members’ efforts to solve a problem 

– includes knowledge exchange and knowledge creation, both of which are important for overall 

organizational performance. Interpersonal knowledge exchanges disseminate temporally good 

solutions across the organization, encouraging organizational members to create solutions based 

on these good ideas. The recombination of individual knowledge, however, leads to increasingly 

similar knowledge bases and a decline in organizational knowledge diversity, thus reducing the 

chance of creating even better solutions in the future. The success of knowledge exchanges or 

creation is significantly influenced by individuals’ leveraging of social capital, which mostly 

resides in informal organizational structure. The outcome of social capital leveraging relies not 

only on the opportunity presented to an individual (determined by the individual’s position in an 

organizational social network), but also on the individual’s motivation and ability to seize that 

opportunity. Additionally, social capital goes through complex structural changes while being 

leveraged, thus affecting its subsequent impacts.  



Considering all the above issues, this dissertation study investigated how overall organizational 

problem-solving performance would be affected by individual members’ autonomous leveraging 

of social capital for knowledge exchange or creation purposes. The research method, agent-based 

modeling (ABM), provided a unique perspective on this question while other approaches cannot. 

It allowed to account for emergent collective outcomes by dynamic and decentralized individual 

interactions. The simulation results suggested non-linear relationships between organizational 

problem-solving performance and (a) individual members’ motivation to leverage social capital, 

(b) individual members’ preference on what social capital to leverage, and (c) the impact of 

existing social capital. This study advanced the understandings of organizational ambidexterity, 

organizational social capital, and organizational networks. The agent-based model developed in 

this study can benefit future research.  
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Chapter 1     
 

INTRODUCTION 

 

Knowledge is an important asset and competitive advantage for organizations, regarding the 

various complex problems they encounter in today’s highly diversified and ever changing 

business environment (Argote et al. 2003; Davenport & Prusak 1998; Nonaka & Takeuchi 1995). 

Due to the division of labor and the specialization of knowledge bases, now the most useful 

knowledge is owned by organizational members and scatters all over an organization. How to 

appropriate individual knowledge remains a subject of great interest to organizational researchers 

(Grant 1996; Nonaka & Takeuchi 1995). Outside organizational contexts, recently collective 

intelligence has shown unprecedented success. We see huge numbers of people from all over the 

world form various communities where everyone is active in creating and sharing knowledge to 

solve one complex problem. The achievements of these communities include Human Genome 

Map, Wikipedia, Mozilla Firefox, and so on. It is argued that, by developing similar social 

interaction environments inside, organizations can copy the success made by pure self-organized 

communities as mentioned above (Alavi & Leidner 2001; Brown & Duguid 2001; Hansen et al. 

1999; Kane & Alavi 2005; McDermott & Archibald 2010; O'Dell & Grayson 1999). 

 

A problem thus rises regarding the difference between an organization and a pure self-organized 

community: to what extent should organizations interfere with individual members’ problem-

solving activities such as independent knowledge creation and knowledge exchanges? This 

problem is worth looking into as some managerial efforts did not pay off or even backfired 

because of unexpected outcomes of individual behaviors (Cross et al. 2002; Haas & Hansen 
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2007; Hansen 2009; Hansen & Nohria 2004; Perlow 1999). In terms of organizational structure, 

the problem is about what formal structure an organization should impose on its members’ 

problem-solving activities that continuously generate informal organizational structure – the 

emergent patterns of social interactions within an organization. To tackle this problem, the 

following questions need to be answered: 

a) Comparing with self-organized communities outside organizational contexts, what are 

organizations’ unique needs in terms of problem solving? 

b) What kind of structure can coordinate organizational members’ decentralized problem-

solving activities to fulfill organizations’ unique needs indicated in (a)? 

c) How could organizational members’ autonomous problem-solving activities collectively 

generate and dynamically maintain the structure indicated in (b)? 

While previous researches have shed some light on the first and the second questions, few 

studies have been done and little has been known about the third one. 

 

Organizations generally have fewer members and more stable membership than self-organized 

problem-solving communities, which means organizations have lower capabilities of knowledge 

creation or innovation. With this constraint, organizations are pressured to solve certain problems 

more quickly and economically, as they usually have specific agenda, timelines and budgets. In 

addition to being aligned and efficient in solving established problems, it is also important for 

organizations to be prepared and flexible for tackling emerging problems, so that they can 

survive the future. Thus, organizational members are expected, on the one hand, to refine 

existing knowledge and current paths of knowledge acquisition to improve efficiency and, on the 

other hand, to explore new knowledge and new paths of knowledge acquisition to ensure 
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sustainability. These two types of the activity are generally referred to as exploitation and 

exploration respectively, and organizations perform the best when individual members’ general 

exploitation and exploration activities are balanced at the organizational level (March 1991).  

 

There are two major balancing approaches based on formal organizational structure (Eisenhardt 

& Martin 2000). The sequential approach is for organizations to shift strategies over time and to 

alternately assign exploitative or exploratory tasks to individual members. The simultaneous 

approach is to establish structurally separated subunits in charge of exploration and exploration 

respectively and to set up higher-level integration processes. Neither of these approaches, 

however, allows organizations to utilize their members’ discretion and abilities to solve complex 

problems in today’s turbulent business environments. This idea was picked up by a third 

approach. This so-called contextual approach proposed to build supportive organizational 

contexts (e.g., processes or structures) that allows and encourages individual members to divide 

and adjust their time between exploration and exploitation activities (Gibson & Birkinshaw 

2004). No organizational design details have ever been concretely specified (O’Reilly III & 

Tushman 2011) though,  except for findings on the impacts of organizational culture, individual 

attributes (Adler et al. 1999; Gibson & Birkinshaw 2004; Gulati & Puranam 2009), and most 

recently, the macro structure of interpersonal knowledge exchanges (Fang et al. 2010; Lazer & 

Friedman 2007; Mason & Watts 2012; Miller et al. 2006).  

 

Interpersonal knowledge exchanges are both blessings and curses for organizational problem 

solving, with regard to the need of balancing exploitation and exploration. On the one hand, they 

allow organizational members to apply existing solutions instead of “reinventing the wheel” or 
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repeating earlier mistakes, therefore improving the efficiency of organizational problem solving. 

Interpersonal knowledge exchanges also promote innovation when new solutions are created by 

integrating existing solutions. On the other hand, rapid dissemination of temporally good 

solutions distracts organizational members from further exploring their own ideas. Knowledge 

exploitation and recombination diminish organization-wide knowledge diversity, which keeps 

the organization from prematurely converging to suboptimal solutions. In order for organizations 

to maintain high problem-solving performances in the long run, interpersonal knowledge 

exchanges should be coordinated at the organizational level to make sure individual solutions 

will not spread too fast or too slowly (Fang et al. 2010; Lazer & Friedman 2007; March 1991; 

Miller et al. 2006). To this end, previous studies suggested confining organizational members’ 

knowledge exchanges to a connected macro network that has both closure and brokerage 

structures (Fang et al. 2010; Lazer & Friedman 2007), a network referred to as hybrid hereafter 

in this dissertation. 

 

In previous studies, the macro interaction network was assumed to be predefined, static, and 

exogenous. It was also assumed that organizational members repeatedly exchanged knowledge 

with their network neighbors (and no one else) in the same frequency. These rigid assumptions 

are appropriate only when the network is part of formal organizational structure. The current 

study was concerned with organizational members’ autonomous knowledge exchanges, which 

are conducted more via informal social interactions than through formal avenues (Cross et al. 

2001). Organizational members’ social interactions generate and then continuously shape 

informal organizational structure, which, once established, structuralizes social interactions 

(Giddens 1984). The mutual influences between micro interactions and macro structure iterates: 
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previous micro interactions collectively and gradually generate current macro interaction 

structure, which subsequently impacts future micro interactions, and this process goes on and on. 

Thus, if the macro interaction network represents informal organizational structure, it should be 

emergent, dynamic, and endogenous. Moreover, it should coevolve with organizational members’ 

autonomous problem-solving behaviors, including interpersonal knowledge exchanges and 

independent knowledge creation (i.e., no knowledge exchange). The current study tried to 

understand how such coevolution influence the overall organizational performance. The 

overarching hypothesis was that the longer a hybrid macro network stayed through the problem-

solving process, the better the overall organizational problem-solving performance would be in 

the long run. The dynamic, cross-level view of the current study is fundamentally different from 

the view of previous studies (Figure 1). This view is closer to organizational reality and may 

shed more light on the balance of knowledge exploitation and exploration as a process. 

 

The preceding coevolution is driven by individual behaviors that deviate from the regulation of 

established social structure. To account for these behaviors, the current study applied the concept 

of social capital – actual and potential resources embedded within, available through, and 

derived from the structure of social relations (Nahapiet & Ghoshal 1998). Social capital 

influences knowledge transfer or exchange (Inkpen & Tsang 2005; Nahapiet & Ghoshal 1998; 

Wei et al. 2011) and knowledge creation (Fleming et al. 2007; McFadyen & Cannella 2004; 

McFadyen et al. 2009; Sosa 2011). While closely related to social networks and often measured 

by network statics, social capital has richer theoretical underpinnings. Network ties and 

structures only describe one dimension of social capital (Nahapiet & Ghoshal 1998) and 

opportunities for leveraging social capital (Adler & Kwon 2002). Whether and how social capital 
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is actually leveraged also depend on individual motivations and abilities. Thus, the non-

deterministic impact of informal organizational structure on individual members’ autonomous 

problem-solving behaviors can be accounted for by individuals’ leveraging of social capital. The 

defining components of a hybrid macro network – closure and brokerage structures – are 

network representations of two major types of social capital (Burt 2000b). Closure induced social 

capital originates from close strong social relations (called bonds) that support low-cost and 

high-quality knowledge exchanges. Brokerage induced social capital comes from distant weak 

social relations (called bridges) that provide diverse, novel knowledge to fuel innovation. The 

leveraging of social capital can thus be generally categorized as bonding or bridging (Adler & 

Kwon 2002; Putnam 2000; Reagans & McEvily 2008).  

 

 

Figure 1. How individual members’ problem-solving behaviors affect organizational 
problem-solving performance given a macro interaction network – the view of the current 

study vs. the view of previous studies 
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The current study asked the question: how would organizational members’ social-capital-based 

problem-solving behaviors, mainly knowledge exchange and creation, influence the overall 

organizational problem-solving performance? Since the concomitant coevolution of micro 

interactions and macro structure is difficult, if ever possible, to capture in real organizations, 

computer modeling and simulation (Law & Kelton 1991) was applied as the research method 

with the following steps. First, the research problem was translated into an agent-based model 

(Epstein 1999; Epstein 2006; Gilbert 2008). Aligned with previous modeling studies, a 

simplified scenario of organizational problem solving known as parallel problem solving (Lazer 

& Friedman 2007) was simulated. The design of model variables and mechanisms was guided by 

the earlier hypothesis on generating and maintaining a hybrid macro network and drew on social 

networks and social capital theories as well as network formation models (Jackson 2010; 

Toivonen et al. 2009). Overall, the organization was modeled as a complex adaptive system, 

which consists of interacting agents, self-organized macro structure, and specific mechanisms 

jointly supporting the coevolution of micro interactions and the macro structure. Next, simulation 

experiments were conducted on a computer implementation of the preceding model to explore 

model behaviors, test theoretical hypotheses, and examine model validity. Since primary model 

inputs were expected to have non-linear and interactive effects on model outputs, experimental 

design and data analysis used Latin Hypercube Sampling and Multivariate Adaptive Regression 

Splines respectively. Results confirmed previous findings on the relationships between 

organizational problem-solving performances and factors that are unrelated to social capital and 

social networks, such as time, problem complexity, organizational size, and individual members’ 

independent knowledge creating abilities. Results also revealed non-linear relationships between 

organizational performances and social capital or social network related factors, such as 



12 
 

individual members’ motivation to leverage social capital, their preferences on what social 

capital to leverage, and the influence of established social capital. These results, to the range of 

this study’s examination, are valid and robust. 

 

This dissertation has five chapters including this introduction. Chapter 2 reviews key concepts 

and relevant theories mentioned earlier, explaining their connections with the current study. 

Chapter 3 specifies conceptual design and computer implementation of the agent-based model 

developed to answer the research question raised above. Chapter 4 described experimental 

design and data analysis and presented the results. Chapter 5 discussed contributions and 

limitations of the current study.   
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Chapter 2 
 

LITERATURE REVIEW 

 

In this chapter, I review the theoretical and methodological foundations of the current study, 

including organizational exploitation and exploration, parallel problem solving, closure and 

brokerage structures, (related) network formation models, complex adaptive social systems, and 

agent-based modeling. Although each of these topics has a vast amount of literature, the review 

focuses on how they are connected with and fitted into the current study.  

 

2.1. Organizational Exploitation and Exploration  

 

There has been a long tradition of dividing organizational activities into exploitation and 

exploration (March 1991). Generally, exploitation relies on familiar sources or paths, attempting 

to leverage and refine extant knowledge; exploration seeks new sources or experiments with new 

paths, often inducing novel knowledge. Exploitation captures the ongoing benefits of established 

efficiency, but may lead to inertia in whatever has led to the success (Leonard-Barton 1992; 

Levinthal & March 1993; Tushman & O’Reilly III 1996). Exclusive exploitation makes an 

organization suffer from knowledge obsolescence and have difficulties in adapting to a new 

environment. In contrast, exploration can accelerate the renewal of organizational knowledge 

base, but too much exploration without exploitation may create chaos (Sastry 1997), trapping an 

organization in endless and unrewarding search (Levinthal & March 1993). Thus, organizations 
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perform the best when exploitative activities, which maintain existing efficiency, and exploratory 

activities, which ensure future development, are balanced at the organizational level.  

 

The literature suggests two major approaches to balancing exploitation and exploration: 

sequential or simultaneous. The sequential approach is based on a belief that exploration and 

exploitation are fundamentally conflicting activities. Advocates of this approach argue that an 

organization cannot pursue both activities simultaneously and succeed in both; thus, exploitation 

and exploration are better balanced by periodically switching attention between them (Brown & 

Eisenhardt 1997; Nickerson & Zenger 2002; Siggelkow & Levinthal 2003). However, the right 

timing is difficult to find, especially in today’s turbulent business environment (Eisenhardt & 

Martin 2000). Thus, recent studies advocate the simultaneous approach also known as 

organizational ambidexterity (Gupta et al. 2006; O’Reilly III & Tushman 2008; Raisch et al. 

2009). It is based on a belief that exploration and exploitation can be complementary and 

therefore should coexist within an organization. 

 

The main challenge of the simultaneous approach is how to balance parallel exploration and 

exploitation activities (Gupta et al. 2006). Spatial separation seems to be an intuitive solution 

(Raisch et al. 2009): a business corporation can create two divisions, one in charge of exploration 

and the other in charge of exploitation; a team can assign individual members different roles. 

This solution, however, does not actually tackle the balancing problem but shift it to a higher 

level where the exploratory and exploitative units or roles need to be integrated and coordinated 

(Gupta et al. 2006), such as the corporation or the team level in the above examples. It is asserted 
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that senior executives (Burgelman 2002; Jansen et al. 2008; Smith & Tushman 2005) or middle 

managers (Huy 2002) can be ambidexterity facilitators1 at the higher level.  

 

Another solution is to rely on organizational members’ abilities to organize their own activities 

and to cope with the ensuing inconsistencies (Gibson & Birkinshaw 2004). Organizational 

behavior studies imply that non-managerial employees can act ambidextrously2 (Leana & Barry 

2000; Lewis 2000; Smith & Lewis 2011). Relying on the abilities of individual employees does 

not rule out managerial interventions. It is accepted that appropriate organizational design can 

make individual efforts collectively favorable for the organization. Earlier studies proposed a 

parallel formal structure that allows members to switch back and forth (Goldstein 1985; 

McDonough & Leifer 1983; Nonaka & Takeuchi 1995), while later studies advocated informal 

structure and organizational culture (Adler et al. 1999; Gibson & Birkinshaw 2004; Gulati & 

Puranam 2009). However, few practical guidelines have been provided so far, and most findings 

were obtained from mathematical or computational models.  

 

March’s seminal work (1991) focused on the interaction between individual members and the 

organization. In this model, a constant vector represented external environment. Individual 

knowledge of the environment (called individual belief) and organizational knowledge of the 

environment (called organizational code) were represented by vectors of the same length. 

Individual (organizational) performance was measured by the proportion of dimensions in the 

individual belief (organizational code) vector that match with the environment vector. Individual 
                                                           
 
1The management can determine the proportion of exploration or exploitation, coordinate the staff, resolve internal 
conflicts, and fulfill multiple roles. The goal is to maintain coherence and appropriate amount of inconsistency. 
2 To fulfill self-development and maintain job satisfaction, individual employees seek stable relations and 
dependable resources on the one hand, and new stimulation and variety in their work on the other hand. 
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and organizational performances improved through the interactions between individuals and the 

organization: on the one hand, individual beliefs changed to match the organizational code (a 

slow change leaves room for individual-level exploration); on the other hand, organizational 

code changed to match the majority of high-performing individual beliefs (a rapid change 

represented organizational-level exploitation). Because of the interactions, individual beliefs and 

the organizational code converged over time. When they finally became identical, neither 

individual nor organizational performance can further improve via interactions. Using this model, 

March found that the ultimate organizational performance is high when there is a balance 

between exploitation and exploration: the organizational code quickly changes to the best 

individual belief, while other individual beliefs slowly change to the organizational code. Miller 

(2006) extended March’s model by allowing for direct interactions among individual members in 

addition to individual-organization interactions. He also distinguished explicit and tacit 

knowledge and the latter can only be exchanged via interpersonal interactions. The results 

showed that rapid interpersonal knowledge exchanges, like rapid convergence of individual 

beliefs to organizational code in March’s model, negatively affect long-run organizational 

performance. Recently there have been two advances in modeling organization-environment 

interaction and the interactions among organizational members, which are reviewed in Section 

2.2 and 2.3, respectively. 

 

2.2. Parallel Problem Solving and the NK Landscape  

 

March and Miller modeled the interaction between an organization and its environment from an 

organizational learning perspective – how fast and how accurate the organization and all its 



17 
 

members learn about the external environment. Recent models (Fang et al. 2010; Lazer & 

Friedman 2007) applied a new type of organization-environment interaction known as parallel 

problem solving. In this scenario, the problems an organization encounters are complex and have 

more than one plausible solution. Also, the problem-solving process can yield valuable 

byproducts, so the organization assigns multiple members to work on the same problem 

independently and expects them to come up with diverse solutions. The parallel problem solving 

scenario differs from the organizational learning scenario used in March and Miller’s models in 

two aspects with regard to their modeling. First, organizational performance depends on all 

individual solutions rather than a few superior solutions since there can be multiple solutions. 

Second, problem solving is path dependent – earlier solutions pave the way for later solutions, so 

the dimensions of a knowledge vector are not independent, at least with regard to the order of 

getting knowledge. In March and Miller’s models, performances are measured by the proportion 

of matching dimensions, implying the independency of different dimensions. Thus, the models 

of parallel problem solving use a new representation of external environment and a new 

measurement of individual and organizational performances.  

 

When modeling parallel problem solving, the external environment is often formalized as a NK 

landscape (Kauffman 1993). The NK landscape is a popular tool to model organizational 

environment (Felin et al. 2012; Foss 2011; Levinthal & Warglien 1999; Rivkin & Siggelkow 

2003; Tiwana 2008) borrowed from complex systems research (Davis 2010). Every point in the 

landscape represents a potential solution that involves N knowledge areas. Each area contributes 

to the overall score of a solution equally and the contribution of each area is affected by K other 

areas. The level of problem complexity can be adjusted by changing the value of K: small value 
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of K creates a smooth environment with simple problems, whereas large K creates a turbulent 

environment producing complex problems. This might be easier to explain by showing a 3D 

visualization of the NK landscape (Figure 2). When K = 0, the landscape looks like gently 

rolling ridges coming off a towering volcano. There is only one peak (called global optimum), 

and any move from that location will diminish performance. The performance scores of adjacent 

locations (i.e., solutions different in only one area) are so highly correlated that moving towards 

any location of higher performance will eventually lead to the global optimum. When K = N – 1, 

the landscape is extremely rugged with many peaks (called local optima) and valleys and the 

sides of ridges are precipitous. There is little correlation among adjacent solutions, as changing 

one area will affect the contribution of every other area. As K increases from 0 to N − 1, the 

number of peaks increases, the level of precipitousness increases, the correlation among moves 

decreases, and the height of the peaks decreases. 

 

 

Figure 2. Visualization of the NK landscape 
 

The problem-solving process is modeled as agent(s) searching on the NK landscape; if there are 

multiple agents, they act in parallel. Individual performance is evaluated by the position of an 

agent: recall that each position corresponds to a scored problem solution. Organizational 

performance is measured by the average performance of all individuals. Kauffman (1993) 



19 
 

distinguished two types of search conducted by single agents – adaptive walking and long 

jumping. Adaptive walking is to alter a random knowledge area of the current solution (i.e., 

explore one adjacent location) at a time. It simulates an incremental, inefficient, trial-and-error 

type of problem solving due to the bounded rationality of human beings: when people 

experiment on alternative solutions, it is difficult for them to anticipate and comprehend the 

consequence if too many changes are made at once. Agents who explore the NK landscape by 

adaptive walking are largely affected by their searching paths and present locations. Given a 

rugged landscape, an adaptive-walking agent tends to get stuck at the first local optimum it meets, 

because every possible next step results in performance decline.  

 

Random long jumping, in contrast, allows agents to alter multiple knowledge areas at once and 

therefore to move beyond immediate neighborhoods and search paths. The number of areas an 

agent can alter at one time, denoted by a model parameter ω, controls how different an agent’s 

new solution is from its last one, or metaphorically, how wide an agent can jump. As for a 

rugged landscape, a sufficiently big ω can improve the overall performance by protecting 

individual agents from the traps of local optima, but overly big ω might have just the opposite 

effect. As illustrated in Figure 3, an agent at the start point can follow any of the three searching 

paths. The green path has the widest span and leads to a local optimum, while the blue path has a 

moderate span and ends up at the global optimum. Further, the counterproductive effect of overly 

big ω is more severe on a smooth NK landscape (i.e., small K). While searching the landscape, 

an agent will move to a new location (i.e., adopt a new solution) only if that place has strictly 

better performance than the agent’s current location. Otherwise, the agent will stay at its original 

location to explore other directions, which means the earlier trial fails. Since a smooth landscape 
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has much fewer peaks than a rugged landscape, random long jumping is more likely to miss any 

peak and fail, as illustrated in Figure 4.  

 

 

Figure 3. Searching paths from the same start with different strides and directions 
 

 

Figure 4. A miss-target random long jump on smooth and rugged landscapes 
 

Adaptive walking and random long jumping are inefficient because they represent single agents’ 

trial-and-error that are limited by individual abilities and disturbed by random chance. 

Fortunately, we can (and should) make agents collaborate when modeling a social system. In the 

real life, human beings always seek for advice from and offer advice to each other. In the face of 
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a complex problem, it is very common for us to combine individual insights into a collective 

solution. Human beings’ collective intelligence is created and made use of through social 

interactions. In the context of parallel problem solving, social interactions take the form of 

interpersonal knowledge exchange: individual members are allowed to learn from each other’s 

solution at any point of time. In other words, while agents search on the NK landscape, they 

propagate signals about the areas they have covered through their observable performances. 

These signals promote long jumping, as people feel safer and are more likely to make big 

changes if they see others do so and succeed. When Agent A sees that Agent B’s solution 

performs better (i.e., Agent B locates at a higher spot on the NK landscape), it may try to imitate 

B’s solution (i.e., jump to where Agent B is or the neighborhood).  This “guided jump” 

represents an adaptive behavior potentially more efficient than random arbitrary long jumps 

mentioned earlier in finding local peaks, as an agent can exploit other agents’ knowledge about 

the NK landscape. Thus, an increasing number of guided jumps improve short-run organizational 

performances. However, rapid settling on the same local peaks prohibits individual agents’ 

further exploration, undermining the organization’s long-run problem-solving ability. In terms of 

the NK landscape metaphor of parallel problem solving, a balance between exploitation and 

exploration thus means having some agents to search the landscape by guided jumping while 

having others do so via adaptive walking or long jumping3 at the same time. Guided jumping is 

enabled by interpersonal knowledge exchanges, which are essentially social interactions. Thus, 

an organization’s macro social interaction structure can affect the combination of guided 

jumping and adaptive waling/long jumping by influencing who exchange knowledge with whom 

                                                           
 
3Whether it is an adaptive walk or long jump depends on individual agents. 
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at what time in what frequency4. In other words, an organization’s macro social interaction 

structure impacts the outcome of parallel problem solving by enabling and constraining micro 

interactions. The next section reviews the development of this idea. 

 

2.3. A Hybrid Macro Network – Closure and Brokerage 

 

Some modeling studies formalized the macro interaction structure as a grid (Levine & Prietula 

2011; Miller et al. 2006) and distinguished the micro interactions on the grid as local or distant. 

Distant interactions lead to rapid convergence of organization-wide knowledge; local interactions 

only cause the convergence of local knowledge (i.e., knowledge possessed by proximate 

individuals), preserving global knowledge diversity. Thus, a proper combination of local and 

distant interactions can enable an intermediate rate of knowledge dissemination across the 

organization and thus contribute to organizational ambidexterity. Recently, some researchers 

applied a network representation of the macro interaction structure and investigated its impact on 

organizational performances (Fang et al. 2010; Lazer & Friedman 2007). This advance is 

important as it opens a door to incorporating the vast literature on organizational social networks 

(Zollo & Winter 2002) and organizational social capital (particularly the structural dimension). 

 

A network includes a set of nodes somehow connected by a set of ties. In the network topology 

of a system, nodes represent system units and ties represent the relations of these units; the way 

nodes interact with each other represents system functions or behaviors. Network ties can be 

                                                           
 
4 For example, if an engineer team in the R&D department would like to test the usability of a new product, whom 
in the R&D department and other departments (e.g. Marketing and Legal departments) they would collaborate with 
and how often their meetings would be. 
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directed or undirected (indicating the direction of interactions) and the values of ties can be 

dichotomous or weighted (indicating the presence/absence or strength of interactions). Temporal 

aspects of ties, such as interaction frequency, can be represented by time sequence (Holme & 

Saramäki 2012) or aggregated into tie weights (also known as tie strength5). A network has 

multiple levels. The lowest level is a node. The highest level is the entire network topology. 

Between them there are dyads6, triads7, and larger sub-structures. Researchers can easily zoom 

back and forth to focus on different levels (Crozier 1972). Various measures and mechanisms 

have been developed to characterize network structures and dynamics (Albert & Barabási 2002; 

Barrat et al. 2004; Boccaletti et al. 2006; Butts 2009; Costa et al. 2007; Newman 2003; Strogatz 

2001). Thus, the network topology provides a promising avenue to the study of structural and 

dynamical complexity of a system.  

 

When the system being studied is a social system such as an organization, the macro network is a 

social network whose nodes and ties represent individual actors in a social system and their 

social interactions or relations (Wasserman & Faust 1994). Lazer and Friedman (2007) are the 

first ones who describe the macro interaction structure of an organization as a social interaction 

network. In their model of parallel problem solving, individual agents interact with each other 

via their network to exchange solutions, which leads to guided jumps on the NK landscape, as 

shown in Figure 5. By comparing four types of network topologies, the authors found that the 

macro network’s efficiency in disseminating knowledge influenced short-term organizational 

problem-solving performances positively but long-term performances negatively. The reason, 

                                                           
 
5The two terms will be used in my dissertation interchangeably. 
6a pair of nodes with or without a tie between them 
7a triple of nodes and any ties among them 
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they argued, is that an inefficient macro network can better preserve knowledge diversity, which 

allows for better exploration in the long run. Fang and colleagues (2010) proposed a special 

inefficient network, in which the nodes are clustered into multiple subgroups and the 

connectivity is high inside each group but low between different groups. By systematically 

changing the degree of subgroup isolation and intergroup connectivity, the authors found that 

semi-isolated subgroups, with a moderate number of random intergroup links, were associated 

with the highest organizational performance, whereas very low and very high levels of 

intergroup connectivity were both associated with lower performances. Densely connected 

subgroups facilitate local dissemination or exploration of knowledge by providing multiple 

pathways between different nodes. Thus, knowledge or solutions of group member will be 

quickly disseminated inside groups. With sparse connectivity between groups, knowledge can 

still spread across the organization, but the semi-isolation shields local ideas from being 

extinguished through competition with globally dominant ideas, thus preserving global 

knowledge diversity and future chances of knowledge exploration. 

 

Figure 5. Individuals search on a NK landscape while interacting via a macro network 
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Empirical studies on social networks and social capital have compatible findings, mostly with 

regard to how two special network structures – closure (Coleman 1988) and brokerage (Burt 

1992) – affect the characteristics of knowledge flows and the distribution of knowledge. Placed 

in the same network, closure and brokerage respectively refer to dense clusters and sparse areas 

between these clusters8 (Figure 6). It has been found, using different research methods, that a 

network with loosely connected dense clusters are associated with higher organizational 

performance than a well-connected dense network or a fragmented sparse network (Balkundi & 

Harrison 2006; Cowan & Jonard 2004; Kwon et al. 2007; Mason et al. 2008; Oh et al. 2006; 

Reagans & McEvily 2008). Below are more specific findings on closure and brokerage structures’ 

complementary effects on knowledge exchanges and knowledge creation. 

 

 

Figure 6. Examples of closure and brokerage 
 

In a closure structure, the nodes (actors) are more connected with one another and thus have 

more opportunities to interact with one another than with the rest of the network. Frequent and 

                                                           
 
8These definitions emphasize the structural aspects rather than social meanings of closure and brokerage. 
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intense interactions strengthen social relations and strong ties facilitate knowledge transfer, 

especially when knowledge is tacit and complex or knowledge sharing behavior is unrewarded 

(Hansen 1999; Kmetz 1984; Orlikowski 1992; Reagans & McEvily 2003). Frequent and intense 

interactions also cultivate group cohesion featured by shared knowledge (e.g., jargons, norms, 

and routines), beliefs, identities, and high levels of trust, reciprocity, sanctioning, and 

predictability (Coleman 1988; 1990; Granovetter 1985; Krackhardt & Hanson 1993; Raub & 

Weesie 1990). The solidarity enables and motivates knowledge exchanges among group 

members, including previously unconnected ones (Bock et al. 2005; Borgatti & Cross 2003; 

Brown & Duguid 2001; Levin & Cross 2004). However, efficient knowledge dissemination and 

strong solidarity produce increasingly homogeneous and redundant knowledge within groups 

(Burt 1992). The strong norms and mutual identification also leads to over-embeddedness and 

inertia (Gargiulo & Benassi 1999; Gargiulo & Benassi 2000), which can block the inflow of new 

ideas by reducing the likelihood that people will look for external knowledge or by increasing 

the transfer costs of external knowledge (Hansen et al. 2005). Consequently, the creativity of 

group members is constrained because of their limited exposure to new information (Perry-Smith 

2006; Perry-Smith & Shalley 2003). 

 

As social interactions mostly happen within groups, there tend to be a scarcity of social 

interactions between groups, leaving “structural holes” in the network topology (Burt 1992). A 

brokerage structure comprises a structural hole and a small number of ties or nodes that span the 

hole and connect otherwise isolated groups (Burt 2000b). These ties and nodes are often referred 

to as bridges and brokers respectively, whereas intra-group ties are often referred to as 

bonds. Thus, brokerage structures always coexist with closure structures; bridges connect groups 
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while indicating their boundaries. Since structural holes separate sources of diverse knowledge 

(i.e., actors from different groups), fresh non-redundant knowledge that can provide insights into 

unprecedented problems is more likely to flow through bridges than through bonds (Burt 1992; 

Granovetter 1973). However, knowledge flowing through a bridge is often low in quantity and 

quality, because the two ends of a bridge tend to have low commitment or liability and limited 

common understandings (Reagans & Zuckerman 2008). Two individuals connected by a weak 

bridge are less likely to proactively offer knowledge to each other. They are also less willing to 

devote time and effort to assist each other during knowledge exchange and creation. A network 

rich in structural holes facilitates the creation and the novel combination of ideas by exposing 

people to diverse knowledge domains. Being situated at the broker position, an individual may 

develop abilities in recognizing the value of new knowledge, transferring a broad range of 

knowledge to a broad audience, and persuading others to provide knowledge (Cohen & Levinthal 

1990; Reagans & McEvily 2003; Rodan & Galunic 2004; Simon 1991). However, the 

knowledge exchanged between groups is not readily disseminated and exploited within groups 

(Burt 2004; Fleming et al. 2007). Knowledge exchange between distinct groups in the same 

organization can be inherently difficult, since involved parties tend to have different interests, 

perspectives, and languages (Hansen & Nohria 2004). Successful innovation or knowledge 

creation requires new knowledge to be pushed to all group members, which is better supported 

by a densely connected group (Obstfeld 2005).  

 

From a social capital view, the above benefits and risks only come into being when individual 

actors are both capable and motivated to leverage the opportunities provided by corresponding 

social network structures. In other words, social network structure is a source but not the only 
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source of social capital (Adler & Kwon 2002; Kwon & Adler 2014). Distinguishing between 

having and using social capital reflects the long-standing appeal for integrating structure and 

agency in social network studies (Emirbayer & Goodwin 1994; Ibarra et al. 2005; Kilduff & 

Krackhardt 1994; Kilduff et al. 2006; Stevenson & Greenberg 2000). This integrative view is 

against rational action theory, which assumes that all individuals are identically motivated by 

self-interests, and the strong version of formalistic network sociology, which posits motivation as 

the effect of network structure (Burt 1992). This view has inspired research on cognitive 

networks (Kilduff et al. 2008), potential and latent ties (Mariotti & Delbridge 2012), and 

individuals’ psychological predispositions (Kalish & Robins 2006; Mehra et al. 2001; Oh & 

Kilduff 2008; Sasovova et al. 2010). By focusing on organizational members’ leveraging of 

social capital, the current study also takes an integrative view that individual members engage in 

organizational problem solving as a result of both their intentional actions or agency behaviors 

and the macro social interaction network they are embedded in. Knowledge exchange is a social 

process that can be initiated by either side. The initiating side must first know and then determine 

whom she can acquire relevant knowledge from or whom her knowledge may help, and both 

sides must be willing or convinced to acquire or provide knowledge and assistance. The macro 

network provides channels that knowledge can but may not actually flow through. Individuals’ 

motivation and ability also greatly impact the direction, content, quantity, and quality of actual 

knowledge flows (Aral & Alstyne 2011). As noted, closure and brokerage represent two major 

conceptualizations of social capital and their key micro-components are bonds and bridges 

respectively. Thus, we could generally refer to individuals’ leveraging of the two types of social 

capital as bonding and bridging (Adler & Kwon 2002; Putnam 2000; Reagans & McEvily 2008).  
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2.4. Network Formation Models and the Formation of a Hybrid Network  

 

While previous studies assumed a predefined static hybrid macro network that represents formal 

organizational structure, the current study is concerned with informal organizational structure 

that is better described as a dynamically formed macro network. There have been many research 

efforts on modeling network formation and dynamics (Jackson 2010; Toivonen et al. 2009). 

Based on their distinct perspectives, methods, and goals, existing network formation models can 

be generally divided into three types. One type of models contains an often stochastic process, in 

which one or two micro mechanisms drive tie dynamics. Inspired by the fact that many real-

world networks (including organizational social networks) show common macro patterns such as 

fat-tailed degree distributions, high clustering, and low diameter (Albert & Barabási 2002; 

Newman & Park 2003; Newman 2001b; Watts 1999), these models are dedicated to account for 

common patterns by simple micro processes. Classic examples include the ER random network 

model9 (Erdos & Renyi 1960), the WS small-world network model10 (Watts & Strogatz 1998), 

                                                           
 
9 Random tie creation is the basic micro process of the first network evolution model proposed in 1959 by Erdos and 
Renyi. The model described the process of growing a random network: n nodes connected by m edges randomly 
selected from all n(n − 1)/2 possible edges with equal probability p. The generated network has a Poisson degree 
distribution. The other key feature is a sudden change of the network connectivity with the increase of p: when p is 
small, many clusters are small and isolated, but once p increases to be larger than a critical value (1/n), the network 
suddenly becomes very dense where almost all the nodes are linked to each other in a giant connected component. 
10 The small-world network originated from an experiment of Milgram (1967), in which selected persons were asked 
to deliver a letter to a target receiver by only passing the letter to their acquaintances. The average length of 
successful communication chains was short, around six steps. The phenomenon is well known as “small-world 
effect” or “six degrees of separation”. In a small-world network, the distance between a random pair of people is 
smaller than expected, implying that an individual is close to most of her friends but may also have a few distant 
friends. The WS model was designed to reproduce the small-world phenomenon by rewiring each link in a regular 
network with a probability p. When p = 0, the network is fully ordered; when p = 1, every edge is rewired so the 
generated network is a random network; when 0 < p < 1, we obtain a small-world network with small average 
shortest path and high clustering coefficient. 
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and the BA scale-free network model11 (Barabasi & Albert 1999). The second type of models are 

statistical models that try to predict the more-than-chance presence or absence of ties or network 

structures based on specific features in social network data sets. These models incorporate 

specific local structural patterns and characteristics of nodes and ties to work with empirical data. 

Two important classes of statistical models are Exponential Random Graph Models (ERGM)12 

(Snijders et al. 2006; Wasserman & Pattison 1996) and community detection models13 (Abell et 

al. 2008). Both random and statistical models rely on tie dynamics (i.e., creation, change, and 

dissolution) and probability theory to handle the real-life complexity caused by individual 

heterogeneity. Random models are less powerful than statistical models with regard to describing 

and distinguishing various possible reasons for the same network dynamics, but the simplicity of 

random models makes them very powerful in explaining the process of network formation and 

evolution. The third type of models exist in the economics literature and see network formation 

as the outcome of agents’ choices of relationships (Bala & Goyal 2000; Buskens & Van de Rijt 

2008; Dutta & Jackson 2003; Galeotti et al. 2006; Goyal & Vega-Redondo 2005, 2007; Hummon 

                                                           
 
11 A scale-free network has a power-law degree distribution, commonly seen in many real-world networks. Highly 
unbalanced degree distribution indicates that, in a large group of people, only a few are extremely popular and most 
others do not have too many contacts. The BA model was the first to generate a scale-free network with two simple 
mechanisms: continuously adding new nodes into the system (“growth”) and connecting with other nodes with 
preference to the high-degree ones (“preferential attachment”). 
12ERGM is designed to statistically analyze how specific structural patterns and node/tie attributes interdependently 
affect the existence probability of a real social network or a particular tie in the network. As statistical models, 
ERGMs are very useful for identifying “more-than-chance” patterns and significant correlations, answering 
questions such as “are networks with a specific pattern more likely to appear than networks without this pattern?” 
ERGMs can correlate network dynamics with multiple confounding patterns/tendencies and estimate their different 
influential strength (via coefficients). However, they are deficient in disentangling causal relations. MCMC (Markov 
Chain Monte Carlo) techniques are usually used to estimate ERGMs. 
13 These models intend to detect natural underlying communities in a specific network and they usually follow 
certain definitions of communities. One class of definitions, represented by normalized cut (Shi & Malik 2000) and 
conductance (Kannan et al. 2004) rely on the normalized number of edges falling between communities to 
quantifying the profoundness of community separation in a network. The second class of definitions, represented by 
modularity (Newman & Girvan 2004) and surprise (Aldecoa & Marín 2013), quantify the extent to which a network 
displays community structure by comparing the network with a random network with similar properties. The third 
class are node similarity measures, with an underlying assumption is that communities are groups of nodes similar to 
each other. 
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2000; Jackson 2003; Jackson & Watts 2002; Jackson & Wolinsky 1996; Watts 2001). These 

models assume that each individual agent chooses relationships to maximize her payoffs or 

utility14, which is a function of the emergent network topology. Among the three types of 

models, statistical models are mostly tie-based with some exception15 (Snijders 1996, 2001; 

Snijders et al. 2010). Random models and economic models are both agent-based but have 

opposing assumptions on the rationality of agents16. It is possible to create agents with bounded 

rationality (Simon 1957) by integrating random and economic models. For example, in the 

current study’s model, an individual agent’s behavior is neither the result of rational choice nor 

caused by pure chance. Instead, both the agent and other agents’ individual propensities, the 

agent’s position in the macro interaction network17, and randomness all have impacts. 

 

The rest of this section will focus on random models whose micro processes reasonably mimic 

social processes and give rise to a combination of closure and brokerage structures, i.e., a hybrid 

network. Previous studies (Fang et al. 2010; Lazer & Friedman 2007) represented the hybrid 

network was by a small-world network, which is known for its high clustering and a few cluster-

spanning bridges (Newman 2001a; Watts 1999). The first small-world network formation model 

randomly rewired the ties of a same-sized cluster network to build bridges (Watts 2003; Watts & 

                                                           
 
14These models often incorporates game theoretic techniques. Utility is different from payoffs in a game. An 
individual player can increase its utility by helping other players increase their payoffs while compromising its own 
payoff. In other words, individual utility may increase with collective rather than individual payoffs. However, every 
move an agent takes is to increase its own utility no matter how that is defined. 
15 This model is known as the stochastic actor-based model. It is a Markov-process based network formation model. 
Unlike ERGMs, the stochastic actor-based model represents changes in the network as the collective outcomes 
emerging from individual choices, which depends on individual agents’ attributes and structural utilities.  
16 To reduce model complexity, modelers “either consider worlds composed of remarkably prescient and skilled 
agents or worlds populated by morons” (Miller and Page 2007). Economic models assume that individual agents are 
completely rational and act towards maximizing their gains, whereas random models assume that the behaviors of 
individual agents follow the same law and only differ by chance. 
17 For example, a well-connected agent are more likely to respond to rather than initiate knowledge exchange 
requests, as there tend to be many invitations from others. 
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Strogatz 1998). Later in small-world network formation models that has a social context, the 

random rewiring was replaced by two micro generative mechanisms – a pair of nodes meet 

randomly or via common contacts (Davidsen et al. 2002; Jin et al. 2001). If the two nodes are not 

already connected, the meeting will tie them up; otherwise, the meeting will reinforce their 

existing connection or do nothing.  

 

Linking via common contacts is a typical micro mechanism in social networks known as triad 

closure: if two currently disconnected nodes in a social network have a common third-party 

contact, then they are likely to connect at some point in the future. This hypothesis was originally 

proposed by Simmel (1980) and confirmed by longitudinal studies on social networks of 

different types and sizes (Hammer 1980; Kossinets & Watts 2006; Leskovec et al. 2008). 

Moreover, the probability for two nodes to meet with each other increases with the number of 

their common contacts (Kwon & Adler 2014; Newman 2001b), as illustrated in Figure 7. 

Because of triad closure, social networks exhibit a unique feature of high clustering and dense 

areas tend to self-sustain or become even denser (Grabowicz et al. 2012; Newman & Park 2003). 

 

 

 
Figure 7. Examples of triad closure18 

                                                           
 
18 If triad closure is the only force that impacts tie formation, then a new tie is more likely to form between 1 and 2 
than between 4 and 5. Node 1 and 2 share two contacts (Node 3 and 4), so connecting 1 and 2 will close two triads 
(123 and 124). Node 4 and 5 only have one common contact Node 1, so connecting 4 and 5 will close one triad 
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As nodes link to each other via common contacts or by chance, the network gets denser and 

eventually each node may connect with every other node. However, real-life social networks 

usually reach a saturated state way before becoming fully connected, because human 

beings’ finite cognitive and communication capacities limit the number of social ties we each can 

maintain active, with or without the help of today’s advanced information technology (Dunbar 

1992; Gonçalves et al. 2011; Leskovec et al. 2009; Miritello et al. 2013). Thus, another typical 

micro mechanism in random network formation models is tie removal. At each step of the 

process, with some probability, either a set of ties are randomly selected and deleted, or one 

node’s incident ties are deleted or replaced by a single random tie. When triad closure coexists 

with (infrequent and conservative) tie removal, well-connected clusters in the network can self-

sustain: if a tie in the cluster is accidentally deleted, the two involved nodes have so many mutual 

friends that they will soon meet again and reconnect. None of the preceding models distinguish 

between dynamics of the network and dynamics on the network (i.e., interactions), which may 

bring in more tie dynamics, such as tie availability and changes in tie strength. 

 
 

2.5. Self-Organization and Complex Adaptive Systems (CAS) 

 

Organizational researchers have been interested in self-organization for quite some time 

(Anderson 1999; Contractor 1994; 1999). Regarding the increasingly complex and turbulent 

business environment as well as the more and more autonomous and heterogeneous employees, 

an organization’s ability to leverage individual members’ self-organization can be the key to 
                                                                                                                                                                                           
 
(145). The probability that a new tie will form between 2 and 5 is even smaller, as the two nodes have no common 
contact. 
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success. However, traditional classical mechanics-based quantitative methods and tools cannot 

provide all the help organizational researchers need in order to develop or test self-organization 

related hypotheses. The main reason is that traditional methods and tools are essentially 

reductionist: they radically simplify research subjects for analytical tractability.  

 

One typical way of simplification is to focus on representative or assume homogenous properties 

and behaviors. When the research subject is a system, system components are assumed to be 

infinitely many, infinitesimally small, or indistinguishable from one another. As noted earlier, 

organizations have a limited number of members. A primary mechanism of self-organization – 

variation – is premised on individual heterogeneity. Self-organized micro interactions also tend 

to produce macro quantities whose probability distributions have no representative value 

(Barabasi & Albert 1999). Another typical way of simplification is to divide and conquer: the 

research subject is dissected into smaller isolated parts, each of which is investigated separately. 

It requires negligible or linear interactions between dissected parts, so that partial findings can 

add up to explain the whole. Interactions that lead to self-organization are usually too complex19 

to meet such requirement. When the research object is a dynamic system, most traditional 

methods and tools focus on equilibrium states rather than the processes that lead to these states20. 

                                                           
 
19Self-organization is one of the defining properties of complex systems. Different components of such systems 
interact with one another in a highly interdependent and often non-linear way; as a result, the whole is usually more 
than the sum of parts (due to extra complexity). 
20Admittedly, some traditional analytical approaches are intended to deal with the transition between states. For 
example, the Markov process is a stochastic model defined by a finite number of states and transition probabilities 
for moving between these states. This process always converges to a unique distribution over states. Thus, what 
happens in the long run will not depend on where the process started or on what happened along the way; instead, it 
will be completely determined by the transition probabilities – the likelihoods of moving between the various states. 
In other word, the Markov process is often used to model a random system that changes states according to a 
transition rule that only depends on the current state. The Markov model are inadequate for understanding self-
organization because they are premised on a fixed set of states and constant transition properties and assume away 
the effects of earlier states including the initial condition. Every time step especially the initial condition is important 
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However, the most interesting part of a self-organization phenomenon is the intermediate 

organizing process, i.e., how decentralized autonomous micro interactions give rise to adaptive 

macro structure without exogenous interventions (Kauffman 1993). Self-organizing processes 

often exhibit significant time lags, discontinuities, or thresholds that are challenges to traditional 

analysis methods/tools.  

 

Organizational researchers have been applying theories of complex systems and methods to 

compensate for the deficiencies of traditional reductionist methods (Anderson 1999; Dooley 

1997; Maguire et al. 2006). In recent years, a specific branch of complexity science named 

Complex Adaptive System (CAS) has been developed and used as a powerful analytical tool. A 

CAS is a multi-agent system characterized by decentralized adaptation of individual agents, 

interaction-based organization of individual adaptations, and emergent complexity of the self-

organizing process. Self-organization refers to the emergence of structural or dynamical patterns 

at the macro level of the system, which represent system-level adaptations to the environment. 

The self-organizing process in a CAS entails three mechanisms – variation, interaction, and 

selection (Anderson 1999; Brownlee 2007; Dooley 1996; Gell-Mann 1994) 21 – and a fourth 

mechanism reproduction if the CAS is a social system (Fuchs 2003; Mingers 2004). These 

mechanisms are elaborated below. 

 

First, micro-level variations serve as the source of and provide opportunities for adaptations. 

While earlier research on physical or chemical systems focuses on variations and ensuing 

                                                                                                                                                                                           
 
for understanding a self-organizing process. In addition, constant transition properties imply a static rather than a 
changing interaction structure. 
21The terms may vary in different studies.  
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adaptations caused by exogenous factors (Prigogine & Stengers 1984); later studies on biological 

or social systems argue that the stochastic and creative nature of endogenous micro behavior22 

can naturally produce ongoing variations, which eventually lead to adaptations (Holland 1995, 

1998; Kauffman 1993). Second, unpredictable heterogeneous micro mechanisms are selected by 

the present macro interaction structure, which act as established system order. Although each 

individual agent decides whom it will interact with, the options are constrained: the present 

macro interaction structure indicates whom in the population each agent is more likely to interact 

with than with the rest of the population (Strogatz 2001). In other words, the present interaction 

structure tends to support compatible micro interactions while inhibiting incompatible ones. This 

self-reinforcing tendency explains why the macro interaction structure (and existing interaction 

patterns) remains relatively stable and why the macro level does not change as frequently as the 

micro level. Sometimes the extant selection power can even stifle the adaptation and evolution of 

the entire system23. Third, since micro interactions continuously and collectively contribute to 

the macro interaction structure, new macro patterns can still emerge and sustain. Given that some 

micro mechanisms are more prevalent than others in the system, current interaction patterns 

reflect previous dominant micro mechanism(s). Because of the self-reinforcing tendency 

discussed above, the effect of any new micro mechanism that is not currently dominant (e.g., 

deviated or adapted individual behaviors) is likely to be dampened. In order for a new 

mechanism to take over, its macro-level effect must overcome the dampening effect, i.e., must 

change the present macro interaction structure. The updated macro structure will then reflect this 

                                                           
 
22The stochastic nature means that there is always a chance for individual behaviors to accidently deviate from 
normal patterns. The creative nature means that individuals can intentionally come up with new better options. 
23This phenomenon is known as “complexity catastrophe” (Kauffman 1993). It means the external force of selection 
(via payoff or utility) that is supposed to drive system adaptation and evolution is suppressed by the internal order of 
a complex system that reflects statistically typical properties or central tendencies of the majority. 
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new mechanism and amplify it by influencing individual agents’ future interaction decisions and 

behaviors. This micro-macro feedback loop keeps rotating as micro adaptations continuously 

generate new promising mechanisms. To understand the structural and dynamic complexity of 

this loop, a network representation of the macro structure has been suggested (Mingers 2006). 

Last, the self-organizing process in a social CAS is history-dependent (Deppa 2014). As 

mentioned earlier, current macro interaction structure grows out of old structures rather than start 

from scratch. In addition, individual decisions are unavoidably affected by their past experiences, 

and individual resistance to change is natural and common in social systems (Argyris & Schön 

1974, 1978; Piderit 2000; Zander 1950). Thus, previous dominant micro-mechanisms may still 

exist in the system, even though their numbers and impacts are fewer than before. Individual 

behaviors are history-dependent, but they are not history-determined. As discussed earlier, 

unpredictable even random variations happen all the time. Since these variations are the sources 

of new powerful micro mechanisms, the latter are difficult to predict too. The current macro 

structure may be weakened by several new micro mechanisms, each representing a possible 

future direction of the system. Thus, when the system is lacking in order due to the dwindling 

macro structure, it is uncertain which micro mechanism will take over and which direction the 

system will head for. 

 

A social CAS reproduces from an initial condition in a path-dependent yet unpredictable manner. 

This process is often visualized as a tree-like map of all available evolutionary paths (Figure 8). 

At each intersection point of the tree (also known as bifurcation point), there are two or more 

branches stretching out, each indicating a possible next state of the system. A set of subsequent 

branches constitutes a possible evolutionary path of the system (e.g., 1  2  4). If the system 
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is at Branch 2, its next state is either Branch 4 or Branch 5 but will never be Branch 6 or Branch 

3, indicating path dependence. When a system reaches a bifurcation point, it is like staying on a 

razor’s edge. Even slight external disturbance can push it down any evolutionary path available 

at that moment. Since there are so many unknown factors (what disturbance there may be and 

how the system may respond), the exact next state of the system is usually unpredictable. 

 

 
Figure 8. CAS evolutionary paths 

 

In summary, a CAS is characterized by iterative micro-macro feedback loop that enables the 

system to self-organize and change as a whole. This signature feedback loop is supported by 

three mechanisms – variation, interaction, and selection. The system’s macro structure impacts 

but not determines the behaviors of individual agents, so behavioral variations continuously 

occur at the micro level and spread in the system through the interactions of individual agents. 

Since the macro structure enables and constrains the interactions of agents, it “selects” different 

variations by affecting their dissemination. Variations that are widely spread collectively change 

the macro structure. Thereby, the feedback loop is iterative and the system keeps changing at the 

micro and macro levels. In a social CAS, the macro structure includes the system’s history; so 

two subsequent states of a changing system have similar lower-level components, although they 
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may be proportioned differently in the two states. 

 

2.6. Agent-Based Modeling and Computer Simulation Theory Development 

 

Originated from early studies in cellular automata (Wolfram 1994) and artificial life (Langton 

1995), agent-based modeling (ABM) is now widely used in social science (Bonabeau 2002; 

Epstein 1999; Macy & Willer 2002; Smith & Conrey 2007) and organizational research (Burton 

& Obel 2011; Miller & Lin 2010). The ABM name itself implies the core of this method and its 

strong connection with CAS. ABM allows to investigate (often unexpected) phenomena of 

interest as emergent patterns of a dynamic system, which consists of multiple agents interacting 

with one another based on predefined rules in a predefined environment (Gilbert 2008).  

 

The basic units of an ABM are agents, which nowadays are commonly implemented as objects in 

object-oriented programming (OOP) languages or by toolkits based on OOP languages. OOP 

distributes and encapsulates a system’s data and operations in different objects as their attributes 

and behaviors. The state of an object is indicated by the values of its attributes, whose changes 

can trigger different behaviors of the object. An object can manipulate its own attributes and 

influence other objects’ attributes by interacting with them; the latter means that an object can 

react to external stimuli from the environment including other agents. During the interaction, an 

object’s behavior is visible to others, while its attributes are usually not. Thus, we can endow 

individual agents with the following characteristics and control their distributions in the agent 

population: 
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• Autonomy: agents choose their own actions based on internal rules and self-goals. 

There is no central or top-down control. 

• Heterogeneity: agents have different identities. They can behave differently given 

different internal or external states with certain probabilities. 

• Adaptability: agents have memory and can learn from the results of their past actions.  

These characteristics are essential for a self-organized social CAS but often underrepresented or 

ignored in traditional analytical models 24 . ABM, however, can incorporate them in an 

individualized straightforward way.  

 

Besides designing the attributes and behaviors of agents, building an agent-based model require 

specifying the environment (or context)25. Not only does the context provide a global view of the 

macro patterns emerging from agent behaviors and interactions, it enables the emergence in the 

first place. Usually each agent only interacts with its local context including other agents inside 

that area. Thus, when model a CAS, the global context defines both the interaction structure and 

the external environment of the CAS. The former impact the evolutionary path of the system 

endogenously by defining, among all agents, who interact with whom in what way; the latter 

impacts system dynamics exogenously by driving the adaptation of the system. Researchers can 

define the global context (from the simplest to the most complex) as a set of parameters, a 

generic data structure (such as vector or matrix), a complex topology (such as grid or network), a 

sub-model, or some kind of combination. Depending on the purpose of modeling, the global 

                                                           
 
24To reduce complexity traditional models either assume that individuals have a high level of homogeneity (typically 
for mathematical models) or aggregate/average individual characteristics (typically for statistical models). 
25In order to distinguish the environment of an agent-based model with that of a CAS, I will refer to the former as 
“context” hereafter. 
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context can be static, altered by the adaptations and interactions of agents, or changed by 

external/temporal triggers26. Today almost every ABM platform allows researchers to observe 

the structural or behavioral characteristics of the global context graphically and to measure these 

characteristics quantitatively. 

 

Finally, the agent-based models described here are discrete and stochastic. The term discrete 

refers to the treatment of time. In the real world events may happen continually and concurrently, 

but in agent-based models time is usually modeled as discrete steps and things happen at each 

step are executed by the computer one by one27. A stochastic model has inherent randomness and 

thus will not produce the same outputs when repeated with the same inputs. The stochasticity of 

agent-based models takes four major forms: (a) the probability distribution of some individual 

attributes or behaviors, (b) the order agents follow to take action at each time step, (c) random 

chance that impacts the interactions between agents, and (d) the decisions each agent makes at 

each time step 28 . In this regard, stochasticity is indispensable for modeling the complex 

individual heterogeneity in the real world (Gilbert 2008). 

 

Computer modeling for theory development (Davis et al. 2007) is an iterative process consisting 

of model construction, validation and analysis. Various tasks of this process are highly 

intertwined (Figure 9) to serve the purpose and assure the rigor of modeling. The process starts 

                                                           
 
26For example, Miller et al. (2008) modeled the environment as a vector whose value randomly changes every 200 
time steps. 
27ABM simplifies time in this way not because computers can only execute one piece of code at a time. Computers 
that have multiple processors and thus can execute multiple threads are very common nowadays. The primary reason 
is that it is very difficult to understand the model results when many agents execute many actions simultaneously. 
28as they are influenced by both random chance and the stochastic states of related agents (the focal agent and other 
agents interacting with the focal agent) 
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by constructing a conceptual model of a real-world social system. Basically, some features of the 

system are abstracted (usually including some independent and dependent variables and their 

relations) and translated into model elements and logics. To ensure model validity, it is suggested 

that researchers draw on existing theories and/or prior knowledge (Carroll & Harrison 1994). 

When prior theories and knowledge are incomplete, ambiguous, unquantifiable, or simply 

unavailable, speculation is inevitable and assumptions are often made wherever needed. When 

there are too many competing theories and contradictory empirical evidence, researchers need to 

decide what they would like to incorporate into the model. In general, the conceptual model 

should capture the essence of the research problem while keeping simplicity. When the purpose 

is to explore new theories or explanations (as opposed to make prediction or pursue analytical 

accuracy), the power of a model often comes from its simplification of reality (Harrison et al. 

2007). 

 

Figure 9. Computer modeling as a theory development process 
(Modified from Sargent 2005) 
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The conceptual model is then implemented by a computer program (the computerized model), 

with explicitly defined parameters and outputs representing independent and dependent variables 

of the research question. Model parameters are primary but not the only model inputs. Other 

inputs include initial conditions of the model and artificial accessories added during 

implementation only to make the computerized model work or have some desirable feature such 

as efficiency (Galán et al. 2009). The effects of these non-primary inputs on model outputs may 

and often confound with the effects of primary model parameters. Implementation verification, a 

verification of the computerized model, thus has two purposes. One purpose is to make sure the 

conceptual design is correctly and completely coded with minimal artificial accessories. For this 

purpose, the extreme condition test is often conducted to assess whether the computer code 

works as expected under a variety of extreme conditions that may occur during simulations, and 

it often leads to the optimization of codes. The other purpose is to identify non-primary model 

inputs, whose effects need to be examined during model analysis. ABM researchers tend to 

expect interesting and surprising outcomes from their models, but chances are such outcomes are 

completely artificial and have nothing to do with the real social system being modeled. Thus, 

agent-based models need more rigorous implementation verification than other computational 

models. 

 

The next step is model analysis, or model behavior exploration if little is known about the real-

world phenomenon being modeled. Computer modeling is deemed an effective alternative to 

traditional statistical and inductive case methods when the real-world phenomenon involves 

multiple unknown or ambiguous variables and processes that interact with each other in a 

nonlinear and dynamic way. By modeling probable variables and processes and then running 
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simulation experiments on the model, researchers try to identify significant relations underlying 

the real-world phenomenon by analyzing the transformation from primary model inputs 

(experimental conditions) to outputs (experimental results). Given a significant relation 

identified from the simulated data, how much can we say about the real-world relation? To 

answer this question, researchers rely on uncertainty analysis (UA), sensitivity analysis (SA), 

and/or robustness analysis (RA), which quantify the degree of confidence and the boundary 

conditions of their findings. Ideally the variations in model outputs (referred to as model 

uncertainty in UA and SA29) are supposed to be caused by only variations in primary model 

inputs, but model construction and implementation usually bring in unwanted variations or 

noises. In agent-based models some common sources of noise30 include (but are not limited to) 

the initial condition of simulation, the scale of micro-to-macro aggregation, timing of 

observation, and stochastic elements31. To accurately evaluate the significance of primary model 

inputs, we need to reduce noises or take them into consideration while measuring model 

uncertainty.  

 

Reducing noises usually takes two steps. First is to collect multiple instances of certain model 

outcomes given different values of a noise factor and the second is to use the representative value 

or central tendency (e.g., mean or median) of these instances for data analysis. The main 

challenge is to figure out how many instances should be considered to obtain the representative 

value: a larger number of instances improve accuracy but their collection needs more time and 
                                                           
 
29UA is concerned with the overall uncertainty in model outputs. SA focuses on the contributions of individual 
model inputs to the uncertainty shown in model outputs, with an attempt to evaluate the relative importance of 
different model inputs (primary or non-primary). 
30referred to as noise factors hereafter 
31The specific value of a stochastic element in each execution run of the model is randomly generated by a pseudo-
random number generator based on the elements’ probability distribution. 
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resources. A reduction approach is preferable when the noise factor meets three conditions: (a) it 

is known to affect the variability but not the central tendency of model outputs; (b) it only 

changes the effect size of any primary model inputs; (c) the noise factor value is easy to change. 

The variations of model outcomes caused by time and inherent stochasticity32 are often reduced 

rather than explicitly analyzed: the former is reduced by collecting model outcomes when they 

are relatively stable; the latter is reduced by averaging the results of replicate runs. If any of the 

three conditions are not met, or if the relation between the noise factor and the model outcome is 

well formed 33, it is preferable to estimate the amount of noise. A common approach is to 

integrate the noise factor into the analysis model, so we can explicitly examine to what extent the 

relations between primary model parameters and model outputs are affected by the noise factor. 

This type of analyses, as they focus on how robust the effects of primary model inputs are 

against noise, is known as robustness analysis34. Fundamentally, robustness analysis tests a null 

hypothesis that there are no interactions between primary model inputs and noise factors.  

 

The results of simulation experiments (including the results of UA/SA/RA) provide internally 

valid evidence that can verify/falsify existing theories/hypotheses or bolster new ones. Based on 

these results, researchers can refine prior theories or hypotheses by adding significant variables 

(e.g., previously unknown moderators or mediators) to or removing insignificant ones from the 

conceptual model. The computerized model can also be improved by changing initial conditions, 

distributions of stochastic elements, or the value ranges of some model inputs. Model refinement 

                                                           
 
32In stochastic models, the use of pseudo-random number generators can produce different simulation results despite 
the use of identical input values. 
33We can formalize the relation as linear, monotonic, or quadratic. 
34RA examines whether the relations between primary model inputs and model outputs remain significant despite 
changes in non-primary model inputs and implementation details. 
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is an iterative and continuing process until the model shows the following features: (a) the 

variations in primary model parameters explain most of the overall variations in model outputs 

(i.e., model uncertainty), (b) model outputs are robust to other variations such as those originated 

from initial conditions and stochastic elements. Only at this point can researchers be confident 

that the relations between specific model parameters and outputs somewhat reflect the relations 

between real-world independent and dependent variables. 

 

Operational validation further regulates the simulated model by comparing the data obtained 

from simulation experiments with empirical data produced by the real social system. The major 

task of operational validation is to calibrate model inputs, initial conditions, and stochastic 

variations so that model outputs are as close as possible to existing empirical data, which can be 

either quantitative or qualitative (e.g., stylized facts, statistical regularities, and behavioral 

signature35). Conceptual validation and implementation verification are also about model validity, 

but they rely on existing theories (including their deduction) or previous versions of the model, 

neither of which is the real-world social system itself. Every theory in empirical science has 

boundary conditions beyond which it is inapplicable or simply wrong. In addition, the validity of 

a theory or a theorizing process has various meanings in social science (Campbell & Stanley 

1963; Cook & Campbell 1979; Feldman & Arnold 1983). Thus, it is important to directly 

compare a simulated model and the reality (Edmonds & Moss 2005). But we should also avoid 

over-fitting a model to specific data for both theoretical and practical reasons (Fagiolo et al. 
                                                           
 
35 In social sciences especially economics, a stylized fact is a simplified presentation of an empirical finding 
(typically on some macro-level phenomenon). It is a broad generalization which is essentially true despite 
inaccuracies in the detail (Fagiolo et al. 2007). An example of statistical regularities would be the heavy-tail shape 
of a power-law distribution, which has been widely observed as the distribution of many complex-system quantities. 
An example of behavioral signature would be discontinuous shifts (a.k.a. phase transitions or abrupt changes) in 
system behavior.  
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2007)36. After all, for complex systems, empirical data by itself is insufficient to understand 

system behavior (Bar-Yam 2013).  

 

2.7. Perspective Remarks and Further Study Guide   

 

Previous studies revealed a nonlinear relationship between an organization’s long-run 

performance in solving an external problem and the speed with which organizational members’ 

individual solutions are disseminated across the organization (by interpersonal knowledge 

exchange or by updating organizational knowledge). Generally, superior individual solutions 

coming up during the problem-solving process should be disseminated to the entire organization, 

but in a relatively “inefficient” manner (i.e., neither too fast nor too slowly), so that 

organizational members’ exploitation of these solutions will not stifle their exploration of even 

better solutions. Recently researchers looked into the possibility of coordinating micro problem-

solving behaviors through a macro social interaction network. The network topology enables 

some knowledge exchanges while constraining others. They found that a hybrid network 

topology with both closure and brokerage sub-structures can support an intermediate rate of 

knowledge (i.e., solution) dissemination and thus contribute to high organizational performance 

in the long run. 

 

Despite previous findings and advances, a specific question, among others, may rise: how would 
                                                           
 
36For example, there are many potential influential factors for which data do not currently exist; some may not be 
amenable to quantitative measurement. Also, the quality of available empirical data is not guaranteed, in that the 
data collection process is guided and thus inherently biased by existing theories and that some complex phenomena 
rarely happen (probably only once). Lastly, when the phenomenon under study is sensitive to initial conditions 
and/or time, it is necessary (and very difficult) to determine the appropriate starting/ending points and sample 
segments in the (longitudinal) empirical data. 
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the overall organizational problem-solving performance be affected by organizational members’ 

autonomous rather than regulated problem-solving behaviors, that is, knowledge exchange and 

creation by leveraging social capital? The first step towards answering this question would be 

modeling the coevolution of the macro interaction network and the micro interactions on the 

network. According to the CAS theories, this micro-macro coevolution hinges on an iterative 

feedback loop between micro behaviors and the macro structure. This loop can be created via 

three dynamic mechanisms – interactions of individual agents, variations in individual behaviors, 

and selections by the macro interaction structure. Given the previous findings on the effect of a 

hybrid network topology, the next step could be to investigate the conditions under which a 

hybrid interaction network resistant to micro variations can arise from organizational members’ 

knowledge exchange interactions. In addition to the macro network topology, several other 

factors may also impact the speed with which superior individual solutions are created or 

disseminated, such as organizational size, problem complexity, the accuracy and frequency of 

interpersonal knowledge exchange and organizational members’ independent knowledge 

creation abilities. The main and interactive effects of these factors should also be investigated in 

the further studies. 
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Chapter 3 
 

MODEL 

 

This chapter introduces the agent-based model developed in the current study. It starts with the 

conceptual model, which theorizes the organization as a social CAS system characterized by the 

coevolution of organizational members’ autonomous problem-solving behaviors and a macro 

network emerging from interpersonal knowledge exchanges. Micro generative mechanisms of 

the model were designed around the generation and maintenance of a hybrid network. Next, a 

computational implementation of the conceptual model was specified, in which earlier identified 

micro generative mechanisms were formalized and associated with one or more model 

parameters. Thus, the main and interaction effects of different micro generative mechanisms on 

organizational problem-solving performances were tested through simulation experiments on 

these parameters, which are described in the next chapter. 

 

3.1. Conceptual Model 

 

The agent-based model of the current study was intentionally aligned with the models of 

previous studies in several aspects to make the results comparable. First of all, organizational 

problem solving was modeled as individual agents searching an NK landscape in parallel and 

exchanging knowledge with one another. Secondly, individual agents’ selections of knowledge 

exchange partners were impacted by a macro interaction network. Thirdly, organizational 

problem-solving performance at a specific time was the average individual performance (i.e., the 
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average value of all individual solutions) at that time. Despite these similarities, the model of the 

current study was essentially different from previous models in its emphasis on the coevolution 

of organizational members’ autonomous problem-solving behaviors and a macro interaction 

network emerging from interpersonal knowledge exchanges. The micro-macro coevolution was 

modeled using complex adaptive system (CAS) theories, which suggest that three micro 

mechanisms – variation, selection, and interaction – can jointly produce an iterative micro-macro 

feedback loop and therefore drive the coevolution. Specifically, an organization was simulated as 

a social CAS and organizational members as individual agents who interact to exchange 

knowledge. The macro interaction network represented the macro structure. Individual agents’ 

problem-solving behaviors (independent knowledge creation or knowledge exchange) 

collectively and gradually change the macro network via tie dynamics. Meanwhile, individual 

behaviors were influenced by individual propensities for social capital (i.e., whether or not use 

social capital and which type of social capital to use), individual agents’ network surroundings, 

and randomness. This section describes primary micro generative mechanisms of the current 

study’s model: how they were identified from the building blocks of a hybrid network, how they 

fit into the CAS theoretical framework, and how they support the micro-macro coevolution 

together.  

 

To start with, the defining feature of a hybrid macro network, as noted earlier, is the concurrent 

presence of two structures – closure and brokerage. An examination of their lower-level building 

blocks37 (Figure 10) reveals that there are only two types of ties: (a) bonds that exist within and 

                                                           
 
37That is, their building blocks at the nodal, dyadic, and triadic levels. A triad is a triple of connected or unconnected 
nodes. A dyad is a pair of connected or unconnected nodes. The disintegration ends up at the dyad rather than the 
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maintain a closure structure (e.g., DE); (b) bridges that cross over a structural hole and connect 

nodes from different closure structures (e.g., BC). Bonds and bridges represent intra-group and 

inter-group social relations respectively. Different combinations of bonds and bridges resulted in 

two types of triads. Bond triads, if fully connected (i.e., with three ties), had no bridge (e.g., 

DEF). Bridge triads, if fully connected, had one to two bridges (e.g., DEG and ABC)38. Bond 

triads exclusively constituted the closure structure, whereas the brokerage structure had at least 

one bridge triad. 

 

 

Figure 10. The characteristic microstructures of a hybrid network topology 

 

                                                                                                                                                                                           
 
nodal level because the current study does not consider nodal changes. Organizational members are assumed to have 
stable properties (e.g., ability of innovation, accuracy in knowledge exchange) and behavioral preferences (e.g., 
whether to exchange knowledge, exchange knowledge with whom) during the problem-solving process. 
38Assume that a closure structure has at least two nodes. 
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The next step was to identify micro mechanisms that can generate or change these building 

blocks. Due to the dynamic complexity of the micro-macro feedback loop, simply pairing 

bonds/bridges with the changes of ties (e.g., creating a bond or reinforcing a bridge) may not 

work. First, a tie can change its role as a bond or bridge. Group merging turns all bridges into 

bonds, while group splitting turns some bonds into bridges. Second, the next role of a tie is path-

dependent. A bridge in the middle of group merging will become a bond, but it will remain a 

bridge if the two groups are further splitting. Third, micro dynamics in a CAS are the results of 

individual actions. When it comes to modeling, defining bonds and bridges from an individual 

perspective is difficult; let alone that each agent has a different network position. Alternatively, 

we can take advantage of the fact that a tie in a hybrid network is more likely to be a bond than a 

bridge. There are more bonds than bridges in a hybrid network because the closure structure is 

denser than the brokerage structure. Thus, a hybrid network can be created by continuously 

maintaining (or increasing) the density of dense areas and occasionally building ties at sparse 

areas to ensure global connectivity. To this end, the current study’s model incorporated two 

micro-mechanisms in terms of individual agents’ selection of knowledge exchange partners. 

With certain probability, an agent will choose the knowledge exchange partner from within her 

current social circle, whom she connects to directly or indirectly via common contacts (i.e., an 

open triad). Otherwise the agent will just randomly select a partner from all other organizational 

members. The two behaviors are referred to hereafter as embedded and random knowledge 

exchanges respectively. 

 

Random knowledge exchanges create bonds and bridges in equal chances at the early stage of 

network evolution, while embedded knowledge exchanges create only bonds. So, when random 



53 
 

and embedded knowledge exchanges both exist (no matter in what proportion), eventually there 

will be more bonds than bridges, leading to the emergence of closure structures as dense areas in 

the network. After that, embedded knowledge exchanges tend to happen at dense areas (i.e., 

within closure structures), as there are more open triads in those areas. They create new bonds 

and make dense areas even denser. As the density of closure structures increases, embedded 

knowledge exchanges are more and more likely to happen on extant bonds instead of creating 

new bonds. In other words, over time embedded knowledge exchanges will stop creating new 

ties. The forgoing processes are illustrated in Figure 11. 

 

 
 

Figure 11. The creation and strengthening of bonds 
 

Random knowledge exchanges are not confined to established closure structures, so there is 

always a chance for them to create new ties in sparse areas outside closure structures. By 

definition, these new ties are bridges. When closure structures are almost isolated, creating 

bridges reduces the closure extent of the entire network by increasing the number of open bridge 

triads. As shown in Figure 12, creating Bridge AB adds four more open triads ABC, ABD, ABE 

and ABF. But then more bridges will be created to close these triads through either embedded or 

random knowledge exchanges. More and more bridges gradually fill in structural holes, leading 

to the merge of adjacent closure structures and the elimination of brokerage structures in the 

middle. As a result, the closure level of the entire network goes up again and after the merge, 
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bridges convert to bonds. 

 

 

Figure 12. Adding bridges first reduce and then increase extent of network closure 
 

The current study’s model implemented a weighted network topology, in which the strength of a 

tie increases whenever there is a knowledge exchange on the tie or decreases whenever there 

is not39. Thus, tie strength contains information on the interaction history of two connected 

agents. When an agent considers a candidate partner for embedded knowledge exchange, she 

will take into account not only the number of their common contacts (see the triad closure 

mechanism in Section 2.4) but also her interaction histories with the candidate and their common 

contacts (if any). When past interactions largely strengthen ties, an agent tends to choose one of 

her closet social contacts over someone she interacted with only for a few times or a friends’ 

friend she never met before. In other words, embedded knowledge exchanges are even more 

likely to close or strengthen bond triads than to close bridge triads (compare Figure 12 with 
                                                           
 
39This process includes tie creation, growth, decay, and dissolution. Creating a tie means increasing tie strength from 
zero to a positive value. The decay of tie strength will eventually lead to the dissolution of a tie when its strength 
becomes zero. Admittedly, sudden tie removal can happen due to the turnover of organizational members: when an 
individual leaves an organization, all her connections in the organization are severed. However, in this study the 
network size was assumed to be fixed, so this situation (i.e., tie removal) was ruled out. 



55 
 

Figure 13). Thus, there tend to be a number of small dense closure structures with strong 

bonds (Kumpula et al. 2009) and these structures tend to emerge quickly and merge slowly. 

Moreover, two connected agents are increasingly likely to interact with each other (i.e., they 

interact more and more often), which simulated a well-observed real-life phenomenon known as 

relational inertia40 (Briscoe & Tsai 2010; Gargiulo & Benassi 1999). 

 
 

Figure 13. Embedded knowledge exchanges are confined within closure structures 
 

Given different proportions of embedded and random knowledge exchanges and different rates 

of tie strength change, the network topology is expected to evolve through different paths 

(Figure 14). As modeled, the initial network topology is empty (State A) and no structural 

pattern has emerged yet at the early stage of network evolution (State B). When knowledge 

exchanges are completely random, no specific sub-structures would emerge (State C) (Erdos & 

Renyi 1960). When there are both random and embedded knowledge exchanges, a hybrid 

network containing brokerage and closure sub-structures tend to arise (State D) (Davidsen et al. 

2002; Jin et al. 2001). When only embedded knowledge exchanges exist, bridges created at the 

early stage of network evolution will either dissolve because of disuse or turn into bonds after the 

merge of adjacent closure structures. Thus, no brokerage structures will sustain. The network 

will have one big closure structure (State E) or several isolated small closure structures (State G). 
                                                           
 
40a tendency to stick with established ties in lieu of initiating new ones 
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Figure 14. Evolutionary paths of the network topology in the model of this study  
(Modified from Fronczak et al. 2007) 

 
Given a high rate of tie decay, no specific structural patterns will emerge and the network 

topology will remain at State B. In contrast, if established ties never decay or tie decay is slower 

than tie formation, all closure structures in the network will become denser and denser until fully 

connected inside (State H). If the network is connected41 at some point, then eventually every 

node will connect with all other nodes (State F). Due to the existence of random knowledge 

exchanges, both State C and State D will evolve into State F. As the network evolves from D to 

F, new ties mostly contribute to the merge of distinct closure structures. Since embedded 

knowledge exchanges tend to happen within existing closure structures, a higher proportion of 

                                                           
 
41 That is, every two nodes in the network are connected by some path in the network. 
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embedded knowledge exchange will slow down the transformation from D to F. If network 

evolution is driven by embedded knowledge exchanges alone, once the network is disconnected 

at some point, it will remain that way, because embedded knowledge exchanges require that 

involved agents have at least one common contact. In this case, zero or slow tie decay will lead 

to multiple fully connected yet isolated closure structures (State H). 

 
In sum, there are two types of micro interactions in the simulated CAS – random or embedded 

knowledge exchanges. The selecting power of the macro structure (i.e., the macro interaction 

network) originates from its extent of closure. The closer the network, the more likely micro 

interactions (random or embedded knowledge exchange) would create or strengthen bonds and 

bond triads, which maintain or reinforce the macro network’s extent of closure. Micro 

interactions do not always follow the macro structure. Variations happen when random 

knowledge exchanges create bridges, thus introducing open triads and reducing the extent of 

network closure. These variations were then neutralized as open triads were closed by embedded 

knowledge exchanges. Finally, the evolution of the macro interaction network was path-

dependent regarding the specific order it went through different states. The more individual 

behaviors conformed to and reinforced the macro structure (represented by the probability of 

embedded knowledge exchanges and the increase of tie strength per interaction), the sooner the 

network would be stabilized and the more resistant it would be to changes (i.e., it would have 

fewer state changes, such as State G and H in Figure 14). Table 1 lists the primary elements of a 

social CAS and their counterparts in the current study’s context. 
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Table 1. CAS elements and their counterparts in the current study 

CAS element Implementation 

The system An organization 

Agents Organizational members 

Macro structure 
A macro interaction network emerging from interpersonal knowledge 

exchanges (including no exchange) 

Micro interactions Random and embedded knowledge exchanges 

Variation New bridges and open triads created by random knowledge exchanges 

Selection 
Mutual reinforcement of closure structures and embedded knowledge 

exchanges 

 

 

3.2. Computational Model 

 

This section specifies the computer implementation of the above conceptual model, which was 

programmed in Java and was compiled and executed on Repast Simphony 2.1 (North et al. 2013). 

First, individual agents were characterized by a propensity for knowledge exchange PKE (0 ≤ PKE 

≤ 1) and a propensity for random knowledge exchange PRM (0 ≤ PRM ≤ 1). While PRM is the 

same for every agent42, PKE varies with agents. Each agent’s PKE, denoted by PKE(i) for Agent i, 

is assigned at model initialization from a power-law distribution43 and then remains constant 

during a simulation run. Mathematically, the probability that PKE has a value x (0 ≤ x ≤ 1) is p(x) 

~ x−α. This probability and the expected number of knowledge exchangers vary with the 

                                                           
 
42Every agent has the same probability of choosing random knowledge exchange, but whether it actually chooses 
that is stochastic (i.e., nondeterministic).  
43According to recent studies on human beings’ telecommunication and online communication, the rate of a specific 
person interacting with other people is relatively stable and shows a power-law distribution within a community – 
only a few members are very active while the majority is not (Cattuto et al. 2010; Muchnik et al. 2013; Perra et al. 
2012). In terms of this study’s model, it means a knowledge exchanger or independent worker at the previous time 
step tends to remain a knowledge exchanger or independent worker at the current and the next time steps. 
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exponent parameter α. In the computer program, x is approximated by y1/(α+1), where y is a 

uniformly distributed pseudorandom number on [0, 1] (Weisstein 2013). As shown in Figure 15, 

a smaller α means fewer knowledge exchangers in the population; when α = 0, the probability 

distribution becomes a uniform distribution. At each time step Agent i participates in knowledge  

 

 
Figure 15. Probability density functions of p(x) ~ x−α given different values of alpha 

 
 
exchange with a probability PKE(i) and conducts independent knowledge creation otherwise. In 

the former case, Agent i conduct random knowledge exchange with a probability PRM and 

embedded knowledge exchange otherwise. The computer program executes the above process by 

generating two pseudo-random numbers from a uniform distribution on [0, 1] and compared 

them with PKE(i) and PRM  respectively to determine the behaviors of Agent i. Besides the 

power-law distribution, three other probability distributions were also implemented for 

comparison. The four of them were distinguished by a categorical variable named actType. 

 

In a model of the previous study (Lazer & Friedman 2007), individuals’ propensity for 

knowledge exchange was modeled as the frequency of interpersonal knowledge exchange. 
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Basically, all agents share the same PKE; at each time step, the computer program decides 

whether an agent will participate in knowledge exchange by generating a pseudorandom number 

(uniformly distributed) to compare with PKE. Thus, every agent has the same frequency but 

stochastic timing of knowledge exchange. However, empirical evidence suggests that the number 

of knowledge exchangers per time step should follow a power-law distribution – only a few 

members are very active while the majority is not (Cattuto et al. 2010; Muchnik et al. 2013; 

Perra et al. 2012). One way to fix the preceding design is to generate power-law instead of 

uniformly distributed pseudo-random numbers, but it still cannot guarantee that every time the 

knowledge exchangers are mainly the same groups of agents. The current study’s model, as 

described earlier, is more consistent with empirical observations. 

 

In this model, agents were placed on an NK landscape to search for the highest peak(s) in 

parallel. Every point in the landscape was described using an N-dimensional vector of binary 

digits (0 or 1), which represents a problem solution involving N knowledge areas , 

44. The score of a solution (denoted as ) was obtained by averaging 

the contribution of each area: 

 

And the contribution of each area is affected by K other areas: 

 
 ( and ) is every other knowledge areas the contribution of ai depends on. 

                                                           
 
44In this study, N = 20. 
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Creating a NK landscape includes predefining the performance of totally 2k+1N solutions and K 

other dependent areas for each area. The former is randomly drawn from a uniform distribution 

over [0, 1], while the latter is randomly drawn from {1,..., N} \ {i}. Following prior studies, 

organizational performance  is measured by the (arithmetic) mean of all individual 

performances45 at a sufficiently large time step. It indicates the system’s ability to develop and 

propagate good solutions (i.e., to explore and exploit knowledge) in the long run. 

 

Every execution of this study’s model continues for a certain number of time steps until all 

individual solutions converge or the change of organizational performance clearly slows down 

and stabilizes. At each time step, three major processes are conducted in sequence: individual 

decision-making, individual solution improving and macro network update (see Appendix A for 

a pseudo-code46 description of the main procedure). The first process is a propensity and priority 

based decision-making process that determines each agent’s behavior at the current time step. 

Firstly, every agent chooses between independent knowledge creation and knowledge exchange. 

With a probability PKE(i), Agent i will improve its solution by independent knowledge creation 

and will not respond to other agents’ knowledge exchange requests as well. Otherwise, Agent i 

will interact with another agent j to exchange knowledge. With a probability PRM, Agent j will be 

randomly selected from the (m – 1) agents (excluding Agent i) in the system. Otherwise, Agent j 

will be the one socially closest to Agent i. In this study’s model, the social closeness of two 
                                                           
 
45Each individual score is normalized against the highest score (i.e., the global maximum) of an NK space and then 
monotonically enlarged by an exponential function . This transformation generates a performance 
distribution that has only a few very good solutions and a majority of quite bad ones, making it easy to detect 
changes in organizational performance (Lazer & Friedman 2007). Otherwise, the distribution of normalized 
individual performances is similar to a normal curve with most solutions having moderate performance scores, and 
the variance of these scores further decreases when problem complexity (K) increases. 
46An informal mixture of natural language and programming conventions that makes the structure and flow of a 
program clear without requiring the reader to be familiar with any particular programming language. 
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agents i and j is measured by Burt’s (1992) local network constraint (LNC) that integrates the 

number of mutual friends and the strength of ties: 

, i ≠ q ≠ j 

where wij is the weight of the tie connecting i and j; wij = 0 if i and j are not connected. wij (as 

well as wiq and wig ) is normalized with the strength of i by (i ≠ g) to make sure 

that falls between 0 and 1 (inclusively). is positively related with the number of 

i and j’s mutual friends and the strength of their respective connections with these friends.  

thus has two components: (a) the amount of relational investment Agent i devotes to Agent j in 

proportion to the first Agent i’s total relational investment, and (b) the extent of triad closure 

regarding the two agents (i and j). If i has no connection in the network, it will interact with a 

random agent regardless of its PRM. 

 

In the models of previous studies (Fang et al. 2010; Lazer & Friedman 2007), an agent obtained 

knowledge from multiple sources at one time. The current study’s model applied a finer time 

scale focusing on one-to-one knowledge exchanges, each of which then became a building block 

of the dynamic network topology. To avoid potential conflicts, an agent will accept another 

agent’s knowledge exchange request only if the former agent has decided not to self-learn at this 

step and is not involved in any knowledge exchange. After accepting a request, the receiver will 

not respond to other requests or send out a request itself. Each agent is allowed to send zero or 

one request per step (independent workers have no requests). If its request is rejected (i.e., the 

receiver decides to self-learn or has been involved in another knowledge exchange), the agent 

will remain active until it is asked to participate in a knowledge exchange by someone else. 
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Agents with a denser ego network or more local constraints have a better chance of being asked. 

As in the real life, such individuals tend to spend more time on knowledge exchange than 

knowledge creation (McFadyen & Cannella 2004). If no one asks, the agent will waste an 

opportunity (as a time step) to improve its performance.  

 

The second process handles individual agents’ independent knowledge creation or knowledge 

exchanges and the ensuing improvement of individual solutions. Since individual solutions are 

formalized as binary vectors in a NK model, agents who work independently improve their 

solutions by randomly selecting ω different knowledge areas in its solution and flip their values 

(from 0 to 1 or vice versa). The resultant new solution will be adopted only if it is strictly47 better 

than the old one. As described in Section 2.2, ω distinguishes the adaptive walking (ω = 1) and 

random long jumping (ω > 1) of individual agents. As for knowledge exchange, the maximal 

percent of knowledge areas that can be exchanged between two agents depends on the strength 

of the network tie that connects them. Specifically, the maximal percent is equal to the ratio of 

the tie’s current weight and maximally possible weight, which is calculated by assuming that the 

tie was continuously strengthened up till the current time step. Unlike the models in previous 

studies (Fang et al. 2010; Lazer & Friedman 2007) where a knowledge exchange only benefits 

the worse side of two interacting agents, i.e., only one individual solution is improved, the 

current study’s model gives either side an opportunity to improve its performance by creating a 

new solution based on the original solutions of both sides. 

 

Between two interacting agents, the one with better original solution (and better individual 
                                                           
 
47I use the “strictly better” criterion to avoid unnecessary fluctuation (Fang et al. 2010; Lazer & Friedman 2007). 
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performance) was named as Agent i and the other one as Agent j. Agent i acts first. It identifies 

some different areas from all exchangeable knowledge areas (see above) and creates a new 

solution by flipping the values of these areas in its own original solution. As mentioned, the 

probability for an agent to miss a different knowledge area in the other agent’s solution is 

defined as the error rate of inter-agent solution imitation (ε). Given totally z different 

exchangeable knowledge areas, the probability that Agent i identifies all of them is (1 – ε)z. The 

probability is higher given smaller z, mimicking the real-life positive relation between the ease of 

knowledge exchanges and the amount of common knowledge already shared by two participants 

(Hansen 1999; Reagans & McEvily 2003) 48 . Because of incomplete knowledge exchange 

(limited by tie strength) and inaccurate discrepancy detection (caused by imitation error rate), the 

new solution is almost always a recombination of two original solutions. Agent i will adopt the 

new solution if it is strictly better than Agent i’s original solution and will discard the new 

solution otherwise. Agent j acts next and follows almost the same procedure as described, except 

that the new solution Agent j creates is based on her original solution and Agent i’s latest 

solution, which may be different from Agent i’s original solution. 

 

Based on the micro behaviors occurring in the second process, the third process updates the 

existing macro interaction network by changing tie strength. In the current study’s model, tie 

                                                           
 
48In addition, this model allows more knowledge areas to be exchanged through stronger ties per interaction, no 
matter whether they are different or not. If the error rate ε was applied to every exchangeable knowledge area rather 
than just different ones, the overall accuracy (1–ε)z decreases with the number of exchanged knowledge areas, 
leading to an unrealistic implication that stronger ties were less reliable than weak ties in terms of knowledge 
exchange.  
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strength resembles memory in terms of development and impacts49, so the change of tie strength 

was modeled based on the ACT (Adaptive Control of Thought) theory on learning and forgetting 

of memory contents (Anderson 1992). According to ACT, activating a memory trace50 requires 

accessing the corresponding memory item. Each access reinforces the activity of the memory 

trace, but the effect decays over time. Thus, the activity of a memory trace is increasingly 

smaller than the total number of accesses. Without constant access, active memory trace will be 

deactivated. In the current study’s model, each tie is a memory trace and tie strength amounts to 

activity of the memory trace; each knowledge exchange interaction on the tie is an access. More 

specifically, each knowledge exchange between two agents either creates a new tie of an initial 

weight δ or increases the weight of an existing tie by δ. Every existing tie not strengthened at the 

current time step will decay. The weight of a tie after the nth and before the (n + 1)th 

reinforcement is given by 

  

where tj is the current time step or tick. It represents the elapsed time since the jth increment. The 

exponent d (0 < d ≤ 1) controls how fast the tie decays and therefore models the speed of 

memory loss. Figure 16 shows the strength of a tie (S) after 100 times of uninterrupted 

reinforcements. It is clear that S has a near-linear positive relation with δ and monotonically (not 

linearly) decreases with d. 

                                                           
 
49A tie goes through the stages of formation, growth, decay, and dissolution with continuous strength change. Tie 
strength is positively related with the duration and the freshness of the tie. The strength of a tie represents the 
interaction history of two agents and affects their future interactions with each other and with other agents. 
50It is defined as the hypothetical structural alteration in brain cells following learning. 
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Figure 16. 3D plots of the tie strength after t = 100 uninterrupted reinforcements  

given the changing values of d and δ 
 

Table 2 summarizes the model parameters and outcomes described in this section, with the last 

column displaying the name by which each variable will be referred to hereafter. Among all the 

model parameters, randLink (the relative probability of random and embedded knowledge 

exchanges in the system), decayRate (the decay rate of network ties not used for interactions), 

wtGain (the increment of tie weight or strength per interaction), actType (indicating the 

probability that an agent prefers knowledge exchange over independent knowledge creation at 

each time step51) and actDist (exponent of the power-law distribution) would directly affect the 

generation and maintenance of a hybrid network topology and then avgScore (organizational 

performance). The impacts of these variables on avgScore were examined through simulation 

experiments on the computational model, as described in the next chapter.  

 

Another influential factor, according to the literature, is the accuracy of interpersonal knowledge 

exchange. This factor (designated as learnErr) was operationalized in the current study the same 

way as in the previous study (Lazer & Friedman 2007). Its effect on avgScore was also explored 
                                                           
 
51Whether the interaction actually happens also depends on whether the other agent is idle at that moment. If the 
other agent has been occupied, the interaction will not happen. 
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through simulation experiments. In addition, the effects of tick (time), space_k (complexity of 

external problems), and innoRange (organizational members’ innovation ability during 

independent knowledge creation) on avgScore were examined to ensure that the NK model of 

parallel problem solving was successfully integrated into the current study’s agent-based model. 

Finally, Model robustness was tested regarding three noise factors: the scale of aggregation 

measured by orgSize (the number of agents), the initial condition of model execution identified 

by nkSpace, and the probability distribution of individual agents’ knowledge exchange intention 

differentiated by actType (limited to the difference between a power-law and a normal 

distribution). 

Table 2. Parameters and outcomes of the current study’s model 
Parameter/ 
outcome 

Description Related model 
component 

Alias 

γ Exponent of a power-law distribution that 
determines the probability that an individual will 
choose knowledge exchange over independent 
knowledge creation (PKE), if given a chance to 
choose 

Individual behavior actDist 

- A categorical variable distinguishing different 
probability distributions of knowledge exchange 
intentions of all the agents 

Individual behavior actType 

PRM If given a chance to choose, the probability that an 
individuals will choose random rather than 
embedded knowledge exchange 

Individual behavior randLink 

δ The initial weight of a tie; the increment of tie weight 
per interaction 

Macro interaction 
structure 

wtGain 

d The exponent in the tie decay function that indicates 
the rate of tie decay 

Macro interaction 
structure 

decayRate 

K The number of interdependent knowledge areas NK space space_k 
ω The number of knowledge areas an individual can 

explore per independent knowledge creation 
Individual attribute innoRange 

ε The probability of missing one different knowledge 
area during solution imitation 

Individual attribute learnErr 

m The number of individual agents; network size; 
organizational size 

Macro interaction 
structure; NK space 

orgSize 

- A categorical variable identifying the initial NK space 
and the set of starting points on the space 

NK space nkSpace 

t Time step/tick Model dynamics tick 

 Organizational performance at a specific time Model outcome avgScore 

  
tF
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Chapter 4 

 

SIMULATION EXPERIMENTS AND RESULTS 

 

Next, simulation experiments were conducted on the above computational model. This chapter 

describes in detail the experimental design, statistical analysis and results. In addition to the main 

experiments, extreme condition tests were also conducted and the results verified the integrity of 

the computational model (Appendix I). In organizational research, no common procedures or 

methods are currently available for exploring and testing agent-based models (Burton & Obel 

1995; Carley 1996). Thus, the methods and techniques applied in the current study, as introduced 

below, mostly came from other research areas (Alden et al. 2013; Chalom & de Prado 2012; 

Fagiolo et al. 2007; Marino et al. 2008; Marks 2007; Richiardi et al. 2006). Both experimental 

design and result analysis were conducted in the R statistical computing environment (R Core 

Team 2014).  

 

4.1. Experimental Design 

 

Mathematically, the transformation from model inputs to outputs can be represented by a 

function Y = F(X), where Y = [y1, y2,..., ynY] is a vector of model outputs (or responses) and X = 

[x1, x2,..., xnX] is a vector of imprecisely known model inputs (or factors). Function F is often 

referred to as a response surface (in the sense that particular responses form a surface over a 

multi-dimensional value space of X) or a meta-model (in the sense that the purpose of data 

analysis is to create a statistical model of the original model to help understand the latter). Every 
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sample is a point on the surface representing a specific model input (Xk = [x1k, x2k,..., xnX,k]) and 

the resultant output (Yk = [y1k, y2k,..., ynY,k]). While single sample points only provide partial 

information on model behavior, a well selected sample set (Xk , Yk), k = 1, 2, …, nS show a 

bigger and better picture of the input-output transformation.  

 

Since samples are collected through computer simulation experiments, a specific sample set 

corresponds to a specific experimental design that plan different experimental conditions (also 

known as design points) 52  and the number of replicate runs 53 . An experimental design is 

typically described by a matrix: Row i represents the ith experimental run, Column j represents 

the jth independent variable (or factors), and the element at the intersection of Row i and Column 

j represents the value of the jth factor in the ith run. Since simulation experiments can be time 

consuming and resource demanding, a good experimental design should be able to get as much 

information of a response surface as possible with a relatively small number of high-quality54 

design points (i.e., samples). 

 

It is contended that global space-filling designs should be used for analyzing complex agent-

based models (Collins et al. 2013; Marino et al. 2008; Timmis et al. 2011). Such models are 

featured by multiple interacting mechanisms each associated with more than one model 

parameter. Exploring model behaviors thus requires considering and quantifying the interactive 

                                                           
 
52An experimental condition is a specific value setting of independent variables (or factors) represented by model 
parameters.  
53A run is defined as a single replication experiment of a design point. In computer simulation experiments, each 
design point typically has multiple runs. 
54High-quality design points satisfy multiple criteria developed for physical (Box et al. 2005; Myers 2009) or 
simulated experiments (Kleijnen et al. 2005). For instance, one criterion states that the design points should meet the 
assumptions of different statistical models/tests.  



70 
 

effects of multiple parameters or even the overall effects of all model inputs. The common one-

at-a-time (OAT) design 55  is inadequate for this purpose, as it focuses on only one model 

parameter while ignoring significant interactive effects among different model parameters 

(Manson 2003; Saltelli & Annoni 2010). In contrast, so-called global designs (or global sampling 

techniques) simultaneously perturb the values of all model parameters based on their probability 

distributions on respective ranges of values. Global designs thus provide a more representative 

indication of the relative influence of different model parameters on model behavior than local 

designs56. 

 

When researchers have little prior knowledge about a response surface or expect it to have a 

complex shape, space-filling designs are preferable to classical ones such as central composite 

design and factorial design (Sacks et al. 1989; Simpson et al. 2001). Classical designs sample at 

the center and extreme points of the model parameter space and takes multiple samples 

(replicates) at each point, as shown in Figure 17a. In contrast, space-filling designs sample 

through the model parameter space uniformly and seldom take replicates (Figure 17b). Both  

 

Figure 17. Classical versus space-filling designs 
(Booker 1998) 

                                                           
 
55It samples the value range of one model parameter while holding all other parameters fixed. 
56The OAT method is often considered as a local design or local sampling technique. 



71 
 

classical and space-filling designs can identify low-complexity features (e.g., second-order 

changes) of the response space by sampling not only at extremes but also somewhere in between. 

However, since classical designs only sample at the corners and the center, it cannot identify 

high-complexity features such as the presence of thresholds (i.e., sudden changes), while space-

filling designs can do so. 

 

A specific experimental sampling technique used in this study is Latin Hypercube Sampling 

(LHS)57.  LHS is a type of stratified Monte-Carlo sampling without replacement technique. It 

divides the distribution of each model parameter into equal probability intervals and then 

samples each interval of each parameter exactly once, so that each model parameter has its whole 

value range well scanned and represented according to its probability distribution on the range. 

More specifically, assume that the response surface we want to estimate has the form of Y = f(X), 

and that we decide to get S = 5 LHS samples by varying d = 3 model parameters a, b, and c. The 

first two parameters are uniformly distributed: a ~ Unif (amin, amax) and b ~ Unif (bmin, bmax). The 

third one follows a normal distribution c ~ Normal (μc, σc). Firstly, the range of each parameter 

is partitioned into S = 5 equally probable intervals and independent samples of parameter values 

are drawn from each interval. Then an S × d LHS design matrix is built by assembling (without 

replacement) the acquired value samples. Each row of the matrix is a unique combination of 

parameter values, known as a design point (a prescribed experimental condition). The next step 

is to run the model using these design points. Corresponding model outputs are collected and 

stored in Y. Figure 18 illustrates the above process.  

           

                                                           
 
57Also called Latin Hypercube Design (LHD) 
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Figure 18. An exemplary LHS process 
(modified from Marino et al. 2008) 

 
LHS can cover the model parameter space adequately while minimizing the correlations between 

the values of different parameters. It also requires fewer samples than simple random sampling 

to achieve the same accuracy (Helton & Davis 2003; McKay et al. 1979). There is no a priori 

rule for determining the sample size for LHS. The minimum value is nX + 1, where nX is the 

number of model parameters being varied, but researchers tend to take much more samples to 

ensure accuracy (Marino et al. 2008). The LHS sample set used in this study had S = 300 
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samples 58  by varying d = 6 primary model parameters, including actDist (indicating the 

probability that an agent prefers knowledge exchange over independent knowledge creation), 

randLink (an agent’s probability of random knowledge exchange), wtGain (tie strength 

increment per interaction), decayRate (indicating the rate of tie decay), learnErr (an agent’s 

probability of missing one different area when exchanging knowledge), and innoRange (the 

number of knowledge areas an agent explores every time when it is independent knowledge 

creation). These parameters were all assumed to follow a uniform distribution on their respective 

value ranges. The sample set was generated by the R package “pse” (Chalom & de Prado 2013) 

and was orthogonal: the input vectors of any two parameters are uncorrelated (Spearman’s rho = 

0)59. This study requires an orthogonal (or near-orthogonal) design because a major statistical 

analysis technique of this study is sensitive to strong collinearity among independent variables 

(De Veaux et al. 1993)60. Appendix B includes the entire LHS sample set, a summary of the 

sampled values of each parameter, and the correlation matrix of all these parameters. 

 

When there are many variables whose main and interaction effects need to be explored, even an 

efficient experimental design like LHS requires a large number of samples. Collecting and 

adjusting61 these samples take a lot of time and computing resources. To further improve the 

efficiency of data collection, researchers often employ a crossed design (Kleijnen et al. 2005), in 

                                                           
 
58The sample size x is calculated by . According to Helton et al (2000), a LHS sample of size ≥ 298 
can generate an adequate number of complementary cumulative distribution functions (CCDFs), so that the 
maximum CCDF generated exceeds the 99th percentile of the population of CCDFs with at least a 0.95 probability.  
59Orthogonality means no multi-collinearity, which is the basic assumption of many statistical tests and makes 
testing results easy to interpret. The “pse” package uses a method that changes the order of design points to force the 
correlation matrix into a prescribed value. 
60The current study applied MARS (Multivariate Adaptive Regression Spline), which automatically drops one of 
two highly correlated independent variables during analysis. 
61for example, changing the order of samples to minimize correlation 

95.099.01 >− x
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which model parameters are categorized into several groups based on their anticipated impacts 

and each group is sampled differently (i.e., using different experimental designs). Generally, the 

less important or ambiguous a group of parameters are, the less accuracy is required in 

estimating their effects on model outcomes, so the fewer samples need to be collected for this 

group of parameters62. For example, primary model parameters and noise factors are usually 

treated as different groups in a cross design and sampled separately. In the end all subgroup 

designs are crossed, with every unique combination of sub design points corresponds to one and 

only one crossed design point.  

 

The non-primary model parameters include space_k and orgSize. They were not the primary 

interests of this study: the impact of problem complexity (space_k) on organizational 

performances has been well studied before; organizational size is just a noise factor. As problem 

complexity and organizational performance has a monotonic relationship, two design points for 

space_k would be sufficient. Thus, the value of space_k alternated between 1 and 5 in this 

study’s simulation experiments, indicating a low and a high level of problem complexity (i.e., a 

smooth or rugged NK landscape) respectively. The variable orgSize has three sample points (50, 

100, and 200) to capture the curvilinear63 relationship between the performance and the size of 

an organization (Keller 1986; McGrath 1984; Shaw et al. 1981).  

 

This study applied two crossed designs for simulation experiments. In the first design, the LHS 

samples of six primary model parameters, actDist, randLink, wtGain, decayRate, learnErr, 
                                                           
 
62In terms of experimental design, it means fewer experimental conditions or design points. 
63Up to a point, group performance tends to increase with size, owing to the added knowledge of the additional 
members. Once past the optimal size, however, performance often decreases because subgroups develop and 
coordination involves costs. 
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innoRange, were crossed with space_k (= 1, 5), orgSize (= 50, 100, 200), and actType (= A, B, C, 

D) that indicates different probability distributions of knowledge exchange intent. When actType 

= A, there is no knowledge exchange. Thus, of six primary parameters, only innoRange (the 

number of knowledge areas an agent explores during independent knowledge creation) is 

ineffective. When actType = B, the probability an agent is willing to exchange knowledge 

follows a power-law distribution on [0, 1], so all six primary parameters are effective. When 

actType = C, all agents are willing to exchange knowledge all the time. When actType = D, the 

probability an individual agent is willing to exchange knowledge follows a normal distribution 

on [0, 1] centered on 0.5. In the last two cases, 5 out of 6 primary model parameters (except for 

actDist) is effective64. In the second crossed design, the LHS samples were crossed with space_k 

(= 1, 5) and nkSpace (= 0, 1, 2, 3, or 4) that distinguishes 5 initial conditions; actType = B and 

orgSize = 100. Table 3 lists all the aforementioned variables regarding their types and value 

ranges in the experimental design. All design matrices are partially presented in Appendix C.  

 
The next step is to decide how many replicated runs are needed for each experimental condition 

(i.e., design point). Researchers often rely on replicate runs to reduce variations in experimental 

results. Since computer programs are executed step by step exactly, replicate runs only make 

sense when the model being experimented has stochastic elements, as these elements lead to 

different model outputs per run even though model inputs are the same. Thus, the purpose of 

replicate runs in simulation experiments is to estimate model uncertainty arising from stochastic 

elements65. As many agent-based models, the current study’s model is stochastic. The number of 

                                                           
 
64I keep ineffective variables in the experimental design in order to get a balanced sample set. 
65There are two types of uncertainty. One of them is called aleatory uncertainty. It is caused by the stochastic 
elements in a model. The other one is called epistemic uncertainty. It results from a lack of knowledge about (a) the 
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replicate runs was determined through a procedure originally developed by Read et al (2012) and 

later implemented by the R package “Spartan” (Alden et al. 2013). According to the results (see 

Appendix D), each experimental condition in this study should have 300 replicate runs (each run 

used a different random seed). 

Table 3. Type and value range of variables used in experimental design 
Variable Description Type Range 
actDist Exponent of a power-law distribution that determines 

the probability that an individual will choose knowledge 
exchange over independent knowledge creation, if 
given a chance to choose 

Continuous [0,3] 

randLink If given a chance to choose, the probability that an 
individuals will choose random rather than embedded 
knowledge exchange 

Continuous [0,1] 

wtGain The initial weight of a tie; the increment of tie weight per 
interaction 

Continuous [0.1,3] 

decayRate The exponent in the tie decay function that indicates 
the rate of tie decay 

Continuous [0.5,1] 

innoRange The number of knowledge areas an individual can 
explore per independent knowledge creation 

Discrete {1,2,3,4,5} 

learnErr The probability of missing one different knowledge area 
during solution imitation 

Continuous [0,1] 

space_k The number of interdependent knowledge areas Discrete {1,5} 
orgSize The number of individual agents; network size; organizational 

size 
Discrete {50, 100, 

200} 
actType A categorical variable distinguishing the probability 

distribution of knowledge exchange intentions of all agents 
Discrete {A, B, C, D} 

nkSpace A categorical variable identifying the initial NK space and the 
set of starting points on the space 

Discrete {1,2,3,4,5} 

 

Finally, the duration of a simulation run (i.e., the number of time steps) is an important decision 

regarding ABM in general and this study in particular. As mentioned, ABM is mainly used to 

study the emergence or self-organization phenomenon in a complex system – how macro 

patterns arise from individual properties and micro mechanisms. A simulation run thus should 
                                                                                                                                                                                           
 
specific values that model inputs should be assigned, and (b) everything in the real domain that is absent in the 
model. Epistemic uncertainty is more of a problem when we try to determine whether an observed relation is an 
artifact of model implementation or actually exists in the real life. 
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last long enough for the dynamic process to completely unfold. A premature simulation risks 

missing important complex changes that tend to happen suddenly and shortly66. To determine the 

end time, ABM researchers typically monitor model behaviors through the values of one or more 

aggregated or emergent measures67 and terminate a simulation run when the value reaches a 

conceptual threshold or stabilizes for a while. The results of this study were directly impacted by 

the duration of a simulation run, as organizational performance (measured by avgScore) is 

expected to improve over time (see Figure 23 in Section 4.3). Thus, one option for the end time 

is the moment when avgScore reaches its maximum value 100%. However, preliminary 

experimental results showed that in some conditions avgScore could not reach this level in an 

acceptable period of time; for example, sometimes after as many as 5,000 steps avgScore still 

lingered around 60%. Thus, in this study a simulation run was terminated at tick 1000 or 1200 if 

avgScore did not reach 100% before that. 

 

4.2. Statistical Analysis 

 

The data derived from simulation experiments are sample points (Xk , Yk), k = 1, 2, …, nS from 

the response surface of the computational model. They describe an input-output transformation 

Yk = Fk (Xk), where Xk = [x1k, x2k,..., xnX,k] and Yk = [y1k, y2k,..., ynY,k]. In this study, xik is the 

value of a primary model parameter or noise factor under a certain experimental condition; yjk is 

the value of avgScore at a specific time step averaged across all replicate runs, with j indicating 

the time. Fk approximates F, the real input-output transformation (i.e., the response surface) of 

                                                           
 
66Abrupt changes are very common in complex systems due to so-called threshold effect. 
67A macro measure is aggregated if it can be defined on the basis of averaging or aggregating micro features or 
dynamics. An emergent measure cannot be reduced to micro features or dynamics. 
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the model. Response surface F contains all the relations between individual input variables xi, i = 

1, 2, …, nX and individual output variables yj, j = 1, 2, …, nY. Without the loss of generality, 

each of these relations is denoted as fij, i.e., yj = fij(xi). By analyzing the results of simulation 

experiments, researchers intend to estimate the form and significance of fij and to assess the 

robustness of the estimated form and significance against noise factors. The analysis is guided by 

hypotheses and/or driven by data, depending on researchers’ prior knowledge of fij.  

 

Specific statistical analysis was determined by the stage of analysis, the expected form of fij, and 

the characteristics of model inputs and outputs. More than one technique was used to collect 

complementary information. Data analysis of the current study started with graphic visualization, 

as plots can reveal complex (nonlinear or non-monotonic) relations, thresholds, and interactions, 

helping to understand model behavior and plan for more sophisticated analysis. Moreover, 

plotting can be particularly enlightening when LHS stratifies over the full range of each input 

variable. However, plots become unclear and incomprehensible when an output variable is 

simultaneously affected by more than three input variables interacting with one another68. Also, 

graphics cannot tell us whether a relation yj = fij(xi) actually exists or how important it is 

compared with other relations. Imagine that the samples (xik, yjk), k = 1, 2, …, nS form a certain 

shape on the response surface captured by abovementioned plots. Is the shape an actual non-

random pattern conditional on the marginal distributions of xi and yj? Answering this question 

needs inferential statistical analysis.  

 

In the current study, different values of each discrete model parameter were analyzed using the 

                                                           
 
68 Unless only one or two of the inputs have dominant effects; then the dominant effects will stand out in the plot. 
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Kruskal-Wallis (KW) test and the Mann-Whitney (MW) test. The KW test examines the overall 

difference. It is the non-parametric alternative to ANOVA and does not require equal group size. 

The MW test (with Bonferroni correction) was conducted for post-hoc pairwise comparison. It 

provides not only the significance level but also the effect size of a difference: anything greater 

than 0.5 is large, 0.5-0.3 is moderate, 0.3-0.1 is small, and anything smaller than 0.1 is trivial 

(Cohen 1988). In simulation experiments, it is relatively easy to collect a large number of 

samples (i.e., paired model inputs and outputs). Given a large enough sample, a statistical 

comparison will always show a significant result unless the effect size is exactly zero. Thus, 

regarding computer experiment results, the effect size or the impact of an input-output 

relationship is more meaningful than the relationship’s statistical significance, which indicates 

the relationship’s magnitude against chance(Troitzsch 2014; White et al. 2014). 

 

The preferable inferential analysis used for continuous model parameters is regression analysis, 

given that the relation yj = fij(xi) has a “shaped” form69 (Storlie & Helton 2008). Regression 

analysis deals with relations between dependent variables and independent variables (model 

outputs and inputs in this study). It estimates separate and joint impact of independent variables 

on the dependent variable (the form of fij) and therefore the relative importance of each 

independent variable (the significance of fij)70. Conventional parametric regression is unsuitable 

                                                           
 
69From a sample-based sensitivity analysis perspective, a statistical significant relation between model inputs and 
outputs can be classified, in terms of increasing complexity, as a linear relation, a monotonic relation, a trend in 
central location, and a trend in variability (spread) (Chalom & de Prado 2012; Kleijnen & Helton 1999). Here a 
“shaped” relation should be at least a trend in central location. A trend in variability is usually detected by a 
variation decomposition approach known as eFAST, which relies on a special heavy sampling technique different 
from LHS (Alden et al. 2013; Marino et al. 2008).  
70usually based on (a) whether xi can be selected into the regression model through an automated stepwise process 
and if so in what order, (b) the proportion of variance in yj that can be accounted for as xi enters the regression 
model, or (c) the standardized regression coefficient of xi in the fitted regression model. 
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for this study. Owing to the structural and dynamic complexity of CAS, the relations investigated 

in this study are mostly non-linear and non-monotonic, so neither linear nor rank regressions can 

help. Moreover, there is not enough knowledge to predetermine the mathematical functions of 

these relations, so polynomial and nonlinear regressions are out of the picture as well71. Also, 

parametric regressions assume data normality, yet the data collected in the current study were not 

normally distributed. Thus, nonparametric regression techniques were used for the current study. 

Instead of imposing rigid assumptions on the underlying data distribution, these techniques 

derive the regression function directly from the data, which makes them useful for data 

exploration as well. 

 

Nonparametric regressions operate locally rather than globally (Kleijnen & Helton 1999). They 

divide the response surface into small regions according to the data and summarize how 

dependent variables respond to independent variables in each region separately. Sometimes 

separate summaries need to be combined and that requires smoothing at region boundaries. The 

specific nonparametric regression technique employed in this study is Multivariate Adaptive 

Regression Splines (MARS®). It estimates nonlinear relations by automatically partitioning the 

hyperspace of independent variables into separate regions and then fitting a piecewise linear 

regression within each region (Friedman 1991).  

 

Mathematically speaking, a spline is defined by a set of polynomial functions and has sufficient 

smoothness at transition points of the polynomial pieces. At each transition point (referred to as 

                                                           
 
71When using either of these two regressions, researchers need to guess a function (including all its nonlinear 
transition points), check its goodness of fit, and refine it iteratively. 
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knot), the slope of the regression line is allowed to change from one region to another. Each knot 

thus marks the end of one local region and the beginning of another; together these knots indicate 

piecewise linear, continuous behavioral changes of the regression model (i.e., predicted response 

surface). Figure 19 shows a spline with two knots at x1 and x2. Knots are mathematically 

represented by so-called basis functions. A basis function is defined as max (0, x − c) or max (0, 

c – x), where x is an independent variable72 and c is a constant value within the range of x 

indicating the location of a knot. The function max (0, x − c) transforms the original variable x 

into a new variable x* that equals to 0 for all values of x up to c and equals to (x – c) for all 

values of x greater than c. This transformation reduces the value range of x to a subset, zeroing 

out everything outside that subset. 

 
Figure 19. Example of a two-knot spline 

(Adapted from Briand et al. 2004) 
 

Figure 20 shows two basis functions max (0, x – 3.1) and max (0, 3.1 – x) that hinge on x = 3.1. 

More than one knot (i.e., more than one pair of basis functions) can be specified for an 

independent variable, allowing complex nonlinear relations to be formalized. A key property of 

basis functions is their ability to locally specify the main effects of corresponding variables, as 

they are nonzero only at part of the range of the variables. MARS describes the interaction effect 
                                                           
 
72The variable can be categorical or continuous. If it is categorical, the basis function is written as max(0, xc - 0). 
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of multiple variables using the product of their basis functions, so the interaction effect is also 

specified locally: it is confined to a sub-region described by the nonzero parts of every relevant 

variable’s basis function, rather than across the full range of these variables. Thus, MARS 

produces a parsimonious regression model that contains local nonzero components only applied 

to where they are needed. Mathematically, the regression model has the form 

 

Each term bk(X) is a basis function or a product of two or more basis functions indicating the 

interaction effects of corresponding variables. The coefficient βk of each basis function or their 

products defines the slope of the non-zero section. 

 
Figure 20. A pair of reflective basis functions 

(knot c = 3.1) 
 

The major task of spline regression is to determine the number of knots and their locations, 

which is a big challenge when the data is of high dimension (i.e., multivariate). Unlike traditional 

spline regression in which the knot positions are predetermined and often evenly spaced, MARS 

automatically searches for optimal knot locations based on the data. The search process adds one 

knot at a time and steadily increases the number, as illustrated in Figure 21. Given multiple 

candidate variables, each of which has one or more knots that can be placed at any positions 

∑+= )()( 0 XbXf kkββ
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within the value range, the algorithm selects basis functions whose entry to the regression 

function will produce the largest decrease in the residual sum of squares (RSS). The selection 

process continues until a predetermined maximum model size (i.e., the number of basis functions 

in the MARS model) is reached. Then the algorithm switches to a backward pruning procedure 

because the forward stepwise addition procedure runs the risk of overfitting, i.e., capturing not 

only the main features but also random fluctuations in the data. The pruning procedure remove 

one at a time any non-constant basis functions that no longer make sufficient contribution to the 

model. At this stage, a variable can be dropped from the MARS model, if none of its basis 

functions remain. The backward procedure produces a sequence of models, among which the one 

with the lowest value of generalized cross-validation (GCV) (Craven & Wahba 1978) will be 

chosen by the algorithm. 

 
 

Figure 21. A stepwise knot selection procedure of the MARS algorithm (Steinberg 2013) 

 

The goodness of a MARS model was evaluated using four measures. The first two measures – 
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the residual sum of squares (RSS) and the coefficient of determination (RSq = 1 – RSS/total sum 

of square) – are borrowed from traditional regression analysis. The third measure GCV is RSS 

penalized for model complexity. Specifically,  

GCV = RSS / n [1 – c(m)/n]2 

where n is the number of observations in the data set and c(m) is the cost complexity measure of 

a model containing m basis functions73. The purpose of using GCV is to avoid overfitting the 

data or creating overly big MARS models. The fourth measure GCVSq normalizes GCV the 

same way as RSq normalizes RSS. In general, a good MARS model should show large RSS and 

GCV and have RSq and GRSq close to 1. 

 

By flexibly representing the response surface and by using a two-stage predictor selection 

procedure, MARS is capable of reliably tracking complex (nonlinear) patterns hidden in high-

dimensional data. MARS is similar to the well-known CART (Classification and Regression 

Tree) model as they both rely on automatic recursive partitioning to select predictor variables. 

But MARS can better handle numeric data because basis functions (smooth curves) are more 

appropriate for continuous variables than the step functions (constant segmentation) used by 

CART. Moreover, MARS allows for more explicit representation and easier interpretation of 

interaction effects. Figure 22 compares the estimated response surface of the same data set using 

CART and MARS. The R package “earth” (version 3.2-7) 74 (Milborrow 2014) was applied to 

estimate MARS models from experimental results. The algorithm was tuned to detect up to four-

way interactions, i.e., products of four different basis functions. 
                                                           
 
73 For MARS, c(m) = m + Penalty * (m – 1) / 2, where Penalty is 2 or 3. (m – 1) / 2 is the number of hinge-function 
knots, so the formula penalizes the addition of knots. 
74MARS® is one of the main algorithms used in Salford Systems commercial predictive analytics software. To avoid 
trademark infringements, some open-source implementations of MARS are called “Earth”. 
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Figure 22. The response surface of the same data set estimated by CART (left) 

versus MARS (right) (Deppa 2014) 

 

4.3. Results of Simulation Experiments 
 

Simulation experiments were conducted on the computational model using the experimental 

designs mentioned above. The first and second crossed designs yielded 7,200 (300 × 2 × 3 × 4) 

and 3,000 (300 × 2 × 5) design points respectively. Every design point has 300 replicate 

simulation runs. The initial setting of each simulation run – the NK space and the starting 

position of every agent on the space – was created using Friedman’s source code (Friedman 2007) 

with predefined values of N and K. The five different initial settings required by the second 

crossed design were created using the same N and K yet different random seeds. Each simulation 

run lasted for 1,000 or 1,200 time steps or ticks. The measure of organizational problem-solving 

performances (avgScore) were collected at each time step for each run and the medians75 across 

300 replicated runs were calculated as stepwise outcomes. This section describes the results of 

simulation experiments (Table 4), which confirmed most of the previous findings while 

providing some new insights. 

 
                                                           
 
75I used median to avoid making assumptions on underlying distributions of the data. In this regard, median is a non-
parametric counterpart of mean. 



 
 

Table 4. Major results of experiment simulations  

 Related 
variables Result Interpretation 

1 tick  

The time variable (tick) had a decreasingly 
positive impact on organizational performance 
(avgScore). 

The organizational performance improved over time but the 
improvement was smaller and smaller. In some conditions it 
stopped improving before achieving the maximally possible 
value. 

2 randLink 

Organizational members’ propensity for 
embedded or random knowledge exchange 
(randLink) has an inverted-U relationship with 
avgScore. 

The organizational performance was better when there was 
a certain combination of embedded and random knowledge 
exchanges than when all knowledge exchanges were 
embedded or random. 

3 actType 

The value of avgScore is significantly higher when 
organizational members’ propensity for 
knowledge exchanges somewhere between 0 and 
1 (actType = B or D) than exactly 0 (actType = A) 
or 1 (actType = C). 

The organizational performance was better when there was 
a certain combination of independent workers and 
knowledge exchangers than when all members tried to 
solve the problem alone or by learning from one another. 

4 actType 

When organizational members’ propensity for 
knowledge exchanges follows a normal 
distribution (actType = D) or a power-law 
distribution (actType = B), the difference in 
avgScore has statistical significance but trivial 
effect size. 

There was no substantial change in organizational 
performance whether or not there is a group of individuals 
who consistently prefer knowledge exchange to 
independent knowledge creation. 

5 decayRate 

Except for extremely large values, the decay rate 
of established network ties (decayRate) positively 
affects avgScore. 

The organizational performance was better when past 
knowledge exchanges less efficiently improved the quality 
and increased the number of knowledge exchange 
channels.  

6 learnErr 
The accuracy of interpersonal knowledge 
exchange (learnErr) positively affects avgScore. 

The organizational performance was better when the 
exchange of different knowledge was more accurate. 
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 Related 
variables Result Interpretation 

7 innoRange 
Organizational members’ independent knowledge 
creating abilities (innoRange) has an inverted-U 
relationship with avgScore  

The organizational performance was better when 
independent workers explored new solutions neither too 
conservatively nor too progressively. 

8 space_k 
Low interdependence among knowledge areas 
(space_k) corresponds to high avgScore 

The organizational performance was better when the 
external problem is less complex. 

9 orgSize 
The value of avgScore increases with 
organization size (orgSize) with a declining rate.  

When organization size is sufficiently big, further enlarging 
the organization will not improve organizational 
performances. 

10 randLink, 
tick 

Given high problem complexity and complete 
knowledge exchanges, the positive effect of 
randLink on avgScore was more apparent when 
tick is large. Given low problem complexity and 
partial knowledge exchanges, the same effect 
was more apparent when tick is small. 

When problem complexity was low and there was a small 
group of frequent knowledge exchangers in the 
organization, the positive effect of random knowledge 
exchanges was more apparent in the short run. The same 
effect was more apparent in the long run when problem 
complexity was high and all individual members were willing 
to exchange knowledge. 

11 randLink, 
decayRate 

Given small randLink, the positive effect of 
decayRate on avgScore was stronger. 

Fast tie decay improve organizational performances even 
more when organizational members prefer embedded 
knowledge exchanges. 

 



 
 

The analysis first examined whether the NK space based parallel problem solving has been 

appropriately integrated into this study’s model. To this end, how organizational performances 

(avgScore) changed with time (tick), problem complexity (space_k), or individuals’ independent 

knowledge creating ability (innoRange) was examined. Figure 23 shows the temporal changes 

of avgScore under different experimental conditions76. The trend lines all follow the same pattern 

– going up and then entering a relatively stable state77, but not all of them reach the maximal 

possible value (avgScore =1) in the end (tick = 1,200). The results indicate that organizational 

performances were improved smoothly over time with a declining rate. Different experimental 

conditions impacted the improving rate and/or the stable value of organizational performances 

but never reversed the progress. Generally, the trend lines in the first three columns (space_k = 1) 

have a higher stable value than the trend lines in the last three columns (space_k = 5). It means 

long-run organizational performances (stabilized avgScore) were lower when the problem was 

more complex. This negative effect of space_k (p < 0.001, effect size |r| = 0.7) was further 

confirmed by KW and MW test results (Appendix E). Finally, if the NK model was successfully 

implemented, there should be an inverted-U relationship between individual independent 

knowledge creating ability (innoRange) and avgScore and the relationship would be more 

apparent over time or when the problem is more complex (see Section 2.2 Figure 4 and in-text 

description where the pace of individual agents’ random jumping amounts to innoRange). These 

expectations were confirmed by plotting partial results of the first cross design (actType = A) 

where innoRange is the only effective primary model parameter (Figure 24). The data points 

form a curve, which, as expected, is clearer at higher ticks and when space_k = 1.  

                                                           
 
76Based on the results obtained from the first crossed design 
77The value of avgScore either completely or almost levels off. 



 
 

 
Figure 23. Changes in avgScore over time under different experimental conditions78 

 
                                                           
 
78 The x-axis indicates elapsed time (tick), and the y-axis indicates organizational performance (avgScore). The columns represent different combinations of 
problem complexity (space_k = 1 or 5) and organization size (50, 100, or 200). The rows represent different probability distributions of individual agents’ 
willingness to exchange knowledge: actType = A, B, C, or D indicates that the probability is all zero, power-law distributed, all one, or normally distributed. 
When actType = B, C, or D, each trend line corresponds to 1 out of 300 LHS design points. When actType = A, none of the primary model parameters except for 
innoRange is effective, so there are only five trend lines corresponding to the five different values of innoRange (1, 2, 3, 4, or 5). 
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Figure 24. The inverted-U effect of innoRange on avgScore  

 

To better observe the distributions of avgScore in different experimental conditions, the density 

functions of avgScore (across 300 LHS design points) at tick = 1,200 is plotted (Figure 25)79. In 

majority, actType = B or D (i.e., some agents prefer knowledge exchange) outperformed actType 

= C (i.e., all agents prefer knowledge exchange) and actType =D (individual propensity for 

knowledge exchange follows a normal distribution around 0.5) slightly outperformed actType =B 

(individual propensity for knowledge exchange follows a power-law distribution80). If agents 

were good at independent knowledge creation (e.g., innoRange = 5), actType = A (i.e., no agent 

prefers knowledge exchange) outperformed actType = B or D, especially when the problem is 

complex (space_k = 5). The KW and MW tests on actType (Appendix E) confirmed that 

avgScore was significantly high (p < 0.001, |r| > 0.1) when some but not all members are willing 

to exchange knowledge (actType = B or D vs. actType = A or C). The difference between 

                                                           
 
79 Appendix F presents a few figures for other ticks. 
80 There are a few agents who constantly exchange knowledge while most others only occasionally do so. 
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actType = B and actType = D was only significant (p < 0.01) in the long run and the effect size 

was small (|r| < 0.1).  

 

 
Figure 25. The probability density functions of avgScore (tick = 1200)81 

 

The effects of continuous model parameters were examined using MARS82 as implemented by R 

package “earth”. In the MARS models presented hereafter, the dependent variable was always 

avgScore, whereas independent variables, knots, and basis functions varied with the underlying 

data set. For simplicity and the ease of result interpretation, the algorithm was tuned to detect up 

to three-way interactions between basis functions (i.e., the product of no more than three 

different basis functions). The first MARS model (MARS-I) was built on partial results of the 

first crossed design – at 32 out of 1,200 time steps and without the subset of actType = A. The 

model explained 93.2% of the variations in avgScore, the dependent variable. The regression 

                                                           
 
81The results of actType = A were shown in histograms because in this condition only one of the six LHS variables  
(innoRange) affects model outcomes and it is discrete (innoRange = 1, 2, 3, 4, or 5). When space_k = 1, the density 
plots are truncated at their right side because avgScore cannot increase outside its defining range ([0, 1]) 
82MARS can handle both continuous and discrete variables. 
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function was a linear combination of 17 basis functions containing 7 uncorrelated independent 

variables (tick, space_k, actType, innoRange, randLink, decayRate, learnErr) automatically 

selected from the ten parameters of this study’s agent-based model (Table 3). All basis functions 

were statistically significant. The other three model parameters (orgSize, actDist, and wtGain) 

were considered as having no impacts on avgScore. Details on MARS-I are presented in Table 5. 

Table 5. MARS-I and the corresponding experimental conditions 

Experimental Condition   

tick 1, 6, 11, 16, 21, 26, 31, 36, 50, 100, 
150, … 1,200 

actType B, C, D  
Number of observations83 172,800  
Number of independent variables 7  
Regression model    
Component Description Coefficient  P value 
Intercept    0.818  < 0.0001 
BF1 max (0, Tick – 150)   0.001 < 0.0001 
BF2 max (0, 150 – Tick) –0.004 < 0.0001 
BF3 space_k = 5 –0.285 < 0.0001 
BF4 max (0, randLink – 0.382) –0.066 < 0.0001 
BF5 max (0, 0.382 – randLink) –0.102 < 0.0001 
BF6 max (0, decayRate – 0.978)   1.340 < 0.0001 
BF7 max (0, 0.978 – decayRate) –0.155 < 0.0001 
BF8 max (0, learnErr – 0.855) –0.821 < 0.0001 
BF9 max (0, 0.855 – learnErr)   0.194 < 0.0001 
BF10 BF2 * BF3   0.002 < 0.0001 
BF11 BF1 * (actType = C) –0.001 < 0.0001 
BF12 BF1 * max (0, innoRange – 2) –0.001 < 0.0001 
BF13 BF1 * max (0, 2 – innoRange) –0.001 < 0.0001 
BF14 (actType = C)* BF5 –0.607 < 0.0001 
BF15 (actType = C)* BF8 –1.700 < 0.0001 
BF16 BF2 * BF3 * max (0, learnErr – 0.868)   0.008 < 0.0001 
BF17 BF2 * BF3 * max (0, 0.868 – learnErr) –0.001 < 0.0001 
Goodness-of-fit    
GCV (Generalized Cross Validation)   0.00555  
GCV-Squared   0.932  
RSS (Residual Sum of Squares)   959  
R-Squared   0.932  
                                                           
 
83The result set has 172,800 items: 3 (orgSize = 50, 100, or 200) × 3 (actType = B, C, or D) × 2 (space_k = 1 or 5) × 
300 (LHS design points) × 32 (tick = 1, 6, 11, 16, 21, 26, 31, 36, 50, 100, 150, …, 1,200). 
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Interpreting MARS results requires combining related basis functions. For example, the general 

effect of decayRate is a combination of BF6 and BF7 in Table 5: 1.34 × max (0, decayRate – 

0.978) – 0.155 × max (0, 0.978 – decayRate). When decayRate > 0.978, the effective coefficient 

of decayRate is 1.34; when decayRate < 0.978, this coefficient is 0.155. Overall, it means that 

avgScore is positively related with decayRate. Interaction effects (if any) should be considered as 

well. For example, the general effect of randLink is – 0.066 × max (0, randLink–0.382) – 0.102 

× max (0, 0.382 – randLink) – 0.607 × (actType = C) × max (0, 0.382 – randLink). When 

actType = C, the equation is simplified to – 0.066 × max (0, randLink – 0.382) – 0.709 × max (0, 

0.382 – randLink); when actType ≠ C, the equation is simplified to – 0.066 × max (0, randLink – 

0.382) – 0.102 × max (0, 0.382 – randLink). It suggests a curvilinear relation between randLink 

and avgScore: when randLink > 0.382, its increment slows down the growth of avgScore; 

otherwise (randLink < 0.382), avgScore grows faster as randLink increases. In addition, when 

randLink < 0.382, the same increment of randLink accelerates the growth of avgScore even more 

when actType = C.  

 

MARS-I showed some earlier results obtained from data visualization and/or KW and MW tests, 

validating the application of MARS on experimental results. First, organizational performance 

avgScore increased with tick but the rate significantly decreased after tick >150 (BF1 & 2). 

Second, avgScore was bigger when space_k = 5 (BF3). Third, avgScore increased more slowly 

in the long run when actType = C (BF11). Fourth, avgScore grew at an increasing rate as 

innoRange went up to a threshold (innoRange = 2); after that, as innoRange increased, avgScore 

grew more slowly (BF12 & 13). MARS-I also detected new effects. First, avgScore grew at an 

increasing rate as individual agents’ propensity for random knowledge exchange randLink went 
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up to a threshold (randLink = 0.382); once passing the threshold, the increment of randLink 

would slow down the growth of avgScore (BF4 & 5). This finding was consistent with the 

postulation of the earlier conceptual model (Figure 13). Among all states of the macro 

interaction network shown in this figure, only State D is a hybrid topology with both closure and 

brokerage sub-structures. The evolutionary paths crossing State D suggest that for the network to 

enter and stay at this state, there must be both random and embedded knowledge exchanges in 

the system.  

 

Second, the error rate of solution imitation learnErr had a negative effect on the growth of 

avgScore (BF8 & 9), which is intuitively expected because inaccurate knowledge exchanges 

would be a waste of time. The same effect was studied before with the same measure84 yet 

limited to a small error rate (20%) and based on a static interaction network (Lazer & Friedman 

2007)85.  It was found that comparing with zero error rate, a small error rate led to better long-

run organizational performances by preserving individual diversity for a longer time. This effect 

dwindled over time as individual solutions gradually assimilated and it was more apparent when 

the problem was more complex86. If the current study’s agent-based model also implemented 

these effects, the prevailing negative effect of learnErr should become relatively weak in the 

conditions when the previous study detected significant positive effects – at the early stage of 

problem solving or given high problem complexity. These interaction effects were confirmed by 

                                                           
 
84 In both the previous and the current studies, the accuracy of knowledge exchanges was defined as the probability 
that an agent misidentifies a knowledge area when she imitates the solution of another agent. 
85 In contrast, the current study investigated a wider range of error rate (from 0 to 1, inclusive) based on a dynamic 
network that evolved with knowledge exchanges on top of it. In this network, every individual could interact with 
different others and strangers during the problem solving process rather than repeatedly with the same others each 
time she decides to exchange knowledge. Thus, individual solutions converge at a slower rate and thus individual 
diversity is better preserved in the current study than in the previous study. 
86Recall that keeping diversity was important for overcoming semi-optimal peaks on a rugged NK landscape. 
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MARS-I (BF16 & 17), suggesting that the seemingly conflicting results of the current and the 

previous studies were actually compatible. 

 

Third, the variable that controlled the speed of tie decay, decayRate, had a positive effect on the 

improvement of avgScore (BF5 & 6). There are two interrelated explanations for this result. On 

the one hand, in this study’s agent-based model, tie strength serves as the “bandwidth” of 

knowledge exchanges – the maximal amount of knowledge exchangeable between two agents 

per interaction increases with the strength of their tie. Fast tie decay would help maintain a 

relatively low level of bandwidth, therefore slowing down knowledge dissemination and 

preserving knowledge diversity. On the other hand, infrequently used ties kept decaying and 

eventually dissolved, so fast tie decay would lead to low global connectivity, which also slowed 

down knowledge dissemination and preserved knowledge diversity.  

 

Finally, the effects of randLink and learnErr on avgScore was stronger when actType = C (BF14 

& 15), as both variables were influenced by the frequency of knowledge exchanges, which 

achieved the highest level when agents all choose knowledge exchange over independent 

knowledge creation. This interaction between knowledge exchange frequency and interaction-

related model parameters probably explains the dispersed trend lines when actType = C in 

Figure 23. Figure 26 visualizes the main effects described above using partial dependence plots, 

one plot for an independent variable. In each plot, the x axis indicates values of the focal 

independent variable, and the y axis indicates avgScore. The blue line is the loess smoothing87 of 

                                                           
 
87 The name "loess" are derived from the term "locally weighted scatter plot smooth," as this method uses locally 
weighted linear regression to smooth data. The smoothing process is local – each  smoothed value is determined by 
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actual avgScore in the data set used to create the MARS-I model. The black line is the MARS 

model prediction of avgScore by varying the focal independent variable while fixing other 

independent variables at their median values. The predicted curve and the actual curve (after 

smoothing) of avgScore have similar shapes in these plots, but the gap between two curves 

suggests an overestimation of MARS-I on the extent to which each independent variable impacts 

avgScore.  

 
Figure 26: Visualization of the main effects in MARS-I 

 

MARS-I was built on a data set aimed to cover the response surface of the agent-based model as 

wide and equally as possible. Since the MARS algorithm selects variables and knots based on 

how much they reduce RSS (or GCV), independent variables with strong global effects (i.e., 

significant across an extensive area of the response surface) will first enter the regression model, 

possibly shadowing locally significant variables (i.e., variables whose effects are significant only 

at some constrained areas of the response surface). As a result, the effects of globally significant 

                                                                                                                                                                                           
 
neighboring data points falling in a predefined span. The process is weighted because a regression weight function is 
defined for the data points contained within the span. Finally, the process used a quadratic polynomial model in the 
regression. 
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variables may be overestimated. As shown in Table 6, avgScore was mostly affected by time 

(tick) affects, and then to decreasing extent by problem complexity (space_k), the accuracy of 

interpersonal knowledge exchange (learnErr), the probability distribution of knowledge 

exchange intentions (actType), organizational members’ propensity for random rather than 

embedded knowledge exchanges (randLink), the decay rate of network ties not used for 

interactions (decayRate), organizational members’ independent knowledge creating ability 

(innoRange). The most influential variables are globally significant ones such as tick, space_k, 

and learnErr. The variables of the most interests (actType, randLink, decayRate, and wtGain), 

that is, variables directly influencing the generation and maintenance of a hybrid network 

topology, either are not so important or do not exist in the regression function at all. 

 
Table 6. Descending importance of MARS-I variables in terms of predicting avgScore88 

 
Variable Importance (-gcv)  Importance (-rss) 

tick 100.0  100.0 
space_k   60.3    59.9 
learnErr   42.1    41.4 
actType   34.6    33.7 
randLink   34.6    33.7 
decayRate   15.2    15.6 
innoRange   12.6    13.0 
 

To more accurately estimate the effects of locally significant independent variables, additional 

MARS analysis were conducted on four subsets of the experimental results obtained from the 

first crossed design. These subsets were identified using MARS-I. In each subset, the values of 

space_k and actType were fixed (space_k = 1 or 5, actType = B or C) and the value ranges of tick 

                                                           
 
88 The number shown in both “Importance” columns indicates the relative importance (percentage) of all variables as 
compared to the most important one. 
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and learnErr were curtailed (tick = 100 to 300 with an interval of 50, learnErr ≤ 0.15). The fitted 

MARS regression models (MARS-II, MARS-III, MARS-IV, and MARS-V) and the 

importance ranking of each model’s independent variables are shown in Appendix G. Some 

earlier detected local effects was more apparent in new MARS models where global effects were 

better controlled. For example, the curvilinear relationships between randLink and avgScore is 

clearer in Figure 27 than in Figure 26 (D). 

 
Figure 27: The effect of randLink in MARS-II to MARS-V (partial dependence plots) 

 

In addition, new influential factors and new effects stood out. First, while MARS-I suggested a 

monotonically positive relationship between decayRate and avgScore, further analysis revealed 

that a negative effect when decayRate is very large (e.g., MARS II BF8 & 9, MARS III BF3 & 
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4). This finding was consistent with the postulation of the conceptual model (Figure 13) that 

overly fast tie decay would undermine organizational performances by preventing the emergence 

of any sub-structures in the macro network, including closure and brokerage structures. 

Moreover, randLink and decayRate had significant interactive effects. Small randLink reinforced 

the positive effect and weakened the negative effect of decayRate on avgScore (e.g., MARS II 

BF14-16, MARS III BF10, 11, 15, & 16). Larger decayRate weakened the positive effect of 

randLink (e.g., MARS IV BF13 & 14), as fast tie decay reduced the chance for random 

knowledge exchanges to create bridges. To better understand how the impact of decayRate on 

avgScore were affected by randLink, a series of simulation experiments were further conducted, 

focusing on structural features of the emergent macro network (see Appendix H). Notably, when 

randLink was small, increasing decayRate (yet the absolute value remains moderate) 

counterintuitively promoted the creation of new ties by reducing the tendency for knowledge 

exchanges to happen on existing ties. In other words, when knowledge exchanges tended to be 

embedded, fast tie decay improves avgScore by keeping the macro network from evolving into a 

“lock-in” state where different knowledge clusters remain isolated (State G in Figure 13). 

 

In addition, increasing wtGain reinforced the (positive) effect of small randLink but had no 

impact on the (negative) effect of big randLink (MARS-II BF12 & 13, MARS-III BF8 & 9). 

This result reflected the model design that wtGain acted like memories guiding (only) embedded 

knowledge exchanges. The impact of wtGain was stronger when its value was bigger and when 

there were more frequent interactions on the network (actType = C). The variable actDist 

controlled the number of active knowledge exchangers and it was only effective when actType = 

B. General, actDist showed a positive effect on organizational performance and that effect 
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interacted with randLink. Finally, given high problem complexity (space_k = 5) and frequent 

knowledge exchanges (actType = C), the positive effect of randLink on avgScore was more 

apparent in the long run (tick >150). Given low problem complexity (space_k = 1) and 

infrequent knowledge exchanges (actType = B), however, the effect was more apparent in the 

short run (tick < 200). 

 

The last step is to examine the robustness of earlier results against certain noise factors. The first 

noise factor is organizational size (orgSize). In Figure 23 and Figure 25, there is no visual 

difference in the growth of avgScore as orgSize varies, regardless of the value of space_k. The 

KW and MW tests (Appendix E) showed that avgScore was significantly lower (p < 0.02) when 

orgSize = 50 than when orgSize = 100 or 200, but the effect size was trivial (|r| ≤ 0.06). MARS-I 

did not select orgSize into the regression function. MARS-II and MARS-IV (space_k = 5) 

included orgSize = 100 and orgSize = 200 as positive terms of the regression function, but 

neither of them interacted with other independent variables (Appendix G, Table A8 and Table 

A11). Moreover, both terms had similar coefficients, indicating similar effect sizes. Together, 

these results suggest that avgScore increased with orgSize in a declining rate (Figure 28), as 

documented in the literature (Keller 1986; McGrath 1984; Shaw et al. 1981), and that the effects 

of other important variables (especially network topology related variables) on avgScore were 

robust to changes in orgSize, as also found in a previous study (Fang et al. 2010).  
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Figure 28: The effect of orgSize in MARS-II and MARS-IV (partial dependence plots) 

Another noise factor is the NK space that serves as the initial condition of a simulation run 

(identified by nkSpace). Some modeling studies (Fang et al. 2010; Lazer & Friedman 2007) 

preferred to reduce the variations in simulation results caused by this factor rather than test the 

robustness of simulation results to this factor. Since the variations are expectedly large, reducing 

them requires running the model on a large number of different NK spaces89 and then averaging 

all the results. The model of the current study is computational intense, so running it on many 

NK spaces would be very time-consuming. Thus, I decided to evaluate the model’s robustness to 

different NK spaces. To this end, MARS analysis was conducted on the experimental results of 

the second crossed design. The fitted model (MARS-VI) is presented in Table A15 (Appendix 

G). The regression function included nkSpace as an important independent variable, as some NK 

spaces (nkSpace = 4 and 5) produced lower avgScore than others and some nkSpace had an 

interaction effect with space_k, a defining property of NK spaces. However, there was no 

interaction between nkSpace and independent variables that are irrelevant to NK spaces. 

 

                                                           
 
89 These NK spaces are defined by the same N and K. Lazer and Friedman used 10,000 NK spaces, whereas Fang 
and colleagues used 200 NK spaces for each experimental condition. 
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The third noise factor was the probability distribution of individual agents’ tendency to exchange 

knowledge. Although avgScore was generally higher when actType = A or C than when actType 

= B or D, no significant difference was expected between actType = B (a power-law probability 

distribution) and D (a normal probability distributions). Graphic visualization (Figure 25) and 

the MW test result (Appendix E) suggest that a normal distribution90 outperformed a power-law 

distribution91 (p < 0.001 when tick = 800 and 1200) in improving avgScore, but the difference is 

trivial (|r| ≤ 0.08). Also, MARS-I did not select actType = B or D into the regression function. 

  

                                                           
 
90Fifty percent agents are willing to exchange knowledge. 
91a few agents constantly exchange knowledge while most others only occasionally would like to participate. 
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Chapter 5 

 

DISCUSSION AND CONCLUSION 

 

This chapter discusses the contributions and limitations of the current study. The major findings 

have theoretical and practical implications on several areas such as organizational ambidexterity, 

organizational social capital, and organizational networks. The extended network topology of 

this study’s model is a modeling innovation that can benefit future research. The limitations of 

the current study lie in its simulation essence and potential extensions in both modeling and 

analysis.  

 

5.1. Major Findings and Implications 

 

The current study was motivated by a recent discovery that a hybrid macro network (with both 

closure and brokerage structures) is a promising structural approach to balancing micro 

knowledge exploitation and exploration activities and achieving high collective performance in 

the long run (Fang et al. 2010; Lazer & Friedman 2007). However, this discovery was made 

based on a predefined and static network; thus, the question of how to generate and maintain 

such a network remains. To tackle this problem, I looked into micro mechanisms that would 

strengthen or weaken closure and brokerage structures and mapped out possible evolutionary 

paths of a hybrid macro network (Figure 13). The overarching hypothesis was that the longer a 

hybrid network persisted, the better the collective performance would be in the long run. The 
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hypothesis was tested on an agent-based model in which the preceding micro mechanisms and 

the macro network were co-evolving, so that the network could be emergent and dynamic.    

 

The simulation results confirmed the existence of a trade-off between (a) rapidly disseminating 

knowledge to improve organizational problem-solving performances in the short run and (b) 

enduringly maintaining knowledge diversity to guarantee organizational problem-solving 

performances in the long run. This trade-off reflects the fundamental need for an organization to 

resolve the tension between exploitation and exploration (March 1991). The results also echoed 

previous findings on the moderating effects of exogenous factors such as organization size, 

problem complexity, organizational members’ independent problem-solving attributes, and the 

configuration of intra-organizational interaction structure. As for new findings, the results 

revealed that long-run organizational problem-solving performances were affected by the 

collaboration propensities of regular organizational members and the residual influence of 

organizational members’ past collaboration. 

 

In organizational research, the specific research topic and modeling scenario of the current study 

– how individual members’ social-capital-based knowledge exchanging and creating behaviors 

affect organizational problem-solving performances – is related to more general research on how 

the structural dimension of social capital affects knowledge creation or exchange in 

organizations (Inkpen & Tsang 2005; Maurer et al. 2011; McFadyen & Cannella 2004; Nahapiet 

& Ghoshal 1998; Tsai & Ghoshal 1998; Wei et al. 2011), a topic following the knowledge-based 
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view of organizations92. The scenario is also  related with the study of contextual ambidexterity 

(Gibson & Birkinshaw 2004; McCarthy & Gordon 2011), which relies on behavioral and social 

means to balance two organizational learning approaches, exploitation and exploration, at the 

organizational or unit level. Both lines of research are concerned with outcomes, i.e., individual 

or organizational performances. They overlap when social capital serves as the dominant 

resource (Turner et al. 2013) for balancing exploitation and exploration. In this regard, social 

capital refers to “the sum of actual and potential resources embedded within, available through, 

and derived from…the network possessed by an individual (or a collectivity), and the 

assets…mobilized through that network” (Nahapiet & Ghoshal 1998). The structural dimension 

of social capital is the overall configuration of connections between actors, which constitute 

information channels that reduce the amount of time and investment required to access 

knowledge. From a network structure perspective, there are two major types of social capital 

rooted in closure and brokerage structures respectively and having complementary effects (Adler 

& Kwon 2002; Burt 2000b; Oh 2004; Oh et al. 2006; Putnam 2000; Reagans & McEvily 2008). 

Thus, a hybrid network consisting of both structures has better outcomes than a pure closure or 

brokerage structure with regard to balancing knowledge exploration and exploitation and 

improving organizational performances, as shown by empirical evidence (Tiwana 2008) and 

simulation results (Fang et al. 2010; Lazer & Friedman 2007). 

 

The major contributions of the current study relate to three research areas – organizational 

ambidexterity, organizational social capital, and organizational social networks (Table 7). First 

                                                           
 
92 The knowledge-based view of organizations extends the traditional resource-based view of organizations by 
identifying knowledge as the primary resource for creating new values and gaining competitive advantages (Grant 
1996; Kogut & Zander 1992; Nonaka & Takeuchi 1995; Spender 1996; Zander & Kogut 1995) 
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and foremost, the current study contributes to organizational ambidexterity studies by linking 

organizational capability in balancing exploitation and exploration to regular organizational 

members’ characteristics that affect their autonomous knowledge exploitation and exploration 

activities. Organizational ambidexterity studies and the knowledge-based research paradigm of 

organizations traditionally focus on the higher level, attributing organizational performances to 

individual-independent factors such as structures, routines, and capabilities (Brown & Duguid 

1991; Eisenhardt & Martin 2000; Kogut 2000; Kogut & Zander 1992; Nahapiet & Ghoshal 1998; 

Spender 1996; Tsoukas 1996; Zander & Kogut 1995; Zollo & Winter 2002). These studies 

implicitly assume homogeneity at the individual level, neglecting how organizational members 

might influence organizational balance between exploration and exploitation. The importance of 

individual characteristics as antecedents to organizational  performances has been supported by 

previous studies that regard individuals as the loci of knowledge93 (Felin & Hesterly 2007; Grant 

1996; Nonaka 1994; Simon 1991) and reinforced by recent arguments that a micro-foundation 

view is necessary for advancing research on knowledge-based value creation and organizational 

capabilities (Abell et al. 2008; Felin et al. 2012; Foss 2011). Besides their explanatory power, 

individual characteristics also have high managerial relevance. As some researchers have pointed 

out, “what is missing is a clear articulation of those specific managerial actions that facilitate the 

simultaneous pursuit of exploitation and exploration … what is needed is greater insight into the 

specific micro-mechanisms …” (O’Reilly III & Tushman 2011). Thus, there have been calls for 

cross-level research that links organizational ambidexterity to individual attributes or behaviors 

(Raisch & Birkinshaw 2008; Raisch et al. 2009; Turner et al. 2013). Most studies responding to 

                                                           
 
93 “The locus problem may be described as that of selecting the ultimate subject-matter for inquiry in behavioral 
science, the attribute space for its description, and the conceptual structure within which hypotheses about it are to 
be formulated” (Kaplan 1964). 
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these calls looked into the role of senior or middle managers rather than regular organizational 

members in meeting the contradictory demands of exploitation and exploration (Alexiev et al. 

2010; Carmeli & Halevi 2009; Huy 2002; Jansen et al. 2009; Jansen et al. 2008; O'Reilly III & 

Tushman 2011), because “such decisions cannot be left to the discretion of lower level employee 

but, at some point, required senior managers to provide the resources and legitimacy…”(O'Reilly 

& Tushman 2013). This statement neglects the possibility that regular organizational members’ 

knowledge exploitation and exploration can be balanced without managerial intervention, which 

is the concern of the current study. 

Table 7. Major contributions to related research areas 

Research area Specific issue Contribution of the current study 
Organizational 
ambidexterity 

Ignorance of regular 
organizational members 
• Lack of cross-level research  
• Lack of research on the 

underlying micro-mechanisms 
of contextual ambidexterity 

The collective power of regular 
organizational members investigated 
• Link organizational performances to 

regular organizational members’ 
characteristics that impact 
independent and collaborative 
problem solving 

• Provide a micro-level and informal 
structure-based demonstration of 
contextual ambidexterity 

Organizational 
social capital 

Lack of an appropriate synthesis 
of various social capital sources 
• Overemphasis on network 

positions 
• Assume network positions are 

antecedents to motivations 
and abilities 

Multiple sources of social capital 
addressed 
• Jointly consider individual members’ 

opportunities, motivations, and 
abilities to utilize social capital 

• Separate individuals’ motivations and 
abilities from their network positions 

Organizational 
social networks 

Lack of an appropriate 
combination of agency and 
network structure 
• Predominance of structure 
• A local perspective on agency  
• Insufficient research on the 

genesis and dynamics of 
networks 

Structuration theory faithfully modeled 
• Implement the iterative mutual 

impacts between agency and the 
global network 

• Model an emergent and dynamic 
network whose evolution is pushed 
by endogenous and exogenous 
(random) factors 
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The current study investigated the connection between organizational performances and 

organizational members’ propensities for three collaborative problem-solving behaviors, that is, 

independent knowledge creation, knowledge exchanges embedded in one’s social circle, and 

knowledge exchanges with random others. Embedded knowledge exchanges create and maintain 

clusters or closure structures. Random knowledge exchanges occasionally create brokerage 

structures by bridging the structural holes concomitant with clusters94. Instead of creating social 

capital, independent knowledge creation avoids social liability conveyed by the same social 

structure that produces social capital (Gabbay & Leenders 2002)95. Each of the three behaviors 

could improve organizational performances over time (Result 1 in Table 4 & Figure 23), but the 

(simulated) organization performed the best when all three behaviors existed with certain 

probabilities (Result 2 and 3 in Table 4). That means these behaviors complemented or 

reinforced one another’s effect. Thus, to improve organizational problem-solving performances 

in the long run, managers are advised to gather information on how frequently and between 

whom knowledge exchanges tend to happen inside their organizations and allocate resources 

accordingly to support all three behaviors96. Merely encouraging knowledge exchanges among 

individual members, as many early studies have suggested, is not enough.  

 

Second, the current study also contributes to organizational social capital studies. While the 

knowledge-based view of organizations and organizational ambidexterity studies tend to ignore 

                                                           
 
94 Organizational members are organized around and differentiated by clusters representing various domains of 
organizational knowledge base. Frequent intra-cluster interactions maintain efficient knowledge dissemination 
inside clusters while separating clusters from each other. Thus, the emergence of multiple clusters also gives rise to 
inter-cluster gaps or structural holes. 
95 Staying (temporarily) isolated from the rest of the network, independent workers can independently and 
efficiently create novel knowledge without being blinded or slowed down (Levine & Prietula 2011) 
96 For example, libraries for independent knowledge creation, chat rooms for embedded knowledge exchanges, 
social events for random knowledge exchanges 
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the individual level, organizational social capital studies started with an individual-level focus 

(Gabbay & Leenders 2002). However, cross-level research is still rare. Even when multiple 

levels are involved, characteristics of the collective level (e.g., teams, units, or organizations) 

often serve as moderators of the relationship between individual-level social capital and its 

individual-level outcomes (Wei et al. 2011). Moreover, the independent variables in previous 

organizational social capital studies were predominantly about individual members’ network 

positions, that is, certain structural characteristics of an individual member’s local network (e.g., 

degree centrality) 97. However, an individual’s network position only provides opportunities. 

Whether and how well these opportunities can be seized also depend on the individual’s 

motivation and ability (Burt et al. 1998; Kalish & Robins 2006; Klein et al. 2004; Mehra et al. 

2001; Oh & Kilduff 2008; Sasovova et al. 2010). Opportunity, motivation, and capability are 

three often intertwined sources of social capital (Adler & Kwon 2002). Also, motivation and 

ability-related individual characteristics (e.g., personality, beliefs, and skills) are more stable, 

reliable and easier for managers to capture than opportunity-related individual characteristics 

(i.e., individuals’ network positions), especially when the network is informal (i.e., interactions 

and relationship building are autonomous) and subjects to change (Hallinan & Kubitschek 1988; 

Kalish & Robins 2006; Snyder & Gangestad 1982), as assumed in the current study. To evaluate 

individual network positions, managers need to map out relevant intra-organizational networks 

(partially or entirely), which has been reported as a real challenge for the management (Casciaro 

1998; Krackhardt 1990).  

 

                                                           
 
97 This is probably owing to the influence of formalistic sociologists such as Ronald Burt, who advocated focusing 
on network analysis to better cumulate research on social capital (Burt 2000b). Thus, organizational social capital 
studies and social network studies have been closely related. 
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As mentioned earlier, the current study was a cross-level research on the collective outcome of 

individual-level social capital. Moreover, this study not only accounted for the dynamic nature of 

opportunity, but also connected it with motivation and ability. Regarding the context of this 

study, the three sources need to be jointly considered, as knowledge potentially available through 

a network tie can only reach an individual when both the source and the recipient are motivated 

and able to exchange knowledge. Specifically, the current study linked organizational problem-

solving performances to individual members’ network positions (opportunity), knowledge 

exchange-related individual propensities (motivation), and independent knowledge creation and 

knowledge-exchange skills (ability), thus providing a holistic and dynamic representation of 

organizational practice. The impacts of individual motivations on organizational performances 

have been discussed earlier (Result 2 and 3 in Table 4). The results also showed that 

organizational performances were positively related with individual members’ abilities to 

accurately exchange knowledge (Result 6 in Table 4). Along with the result on individuals’ 

independent knowledge creation abilities (Result 7 in Table 4), it is suggested that organizations 

tend to have high problem-solving performances, if organizational members have superior 

knowledge exchange skills and average independent knowledge creation skills. Another 

implication on hiring comes from the result on organization size. There seems to be a threshold 

in organization size; once the threshold is met, hiring more people would have diminishing 

returns or even undermine organizational performances in parallel problem solving (Result 9 in 

Table 4). Future research could look into optimal organization size regarding problem 

characteristics.  
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Third, the current study contributes to organizational social networks studies. Overemphasizing 

individuals’ network positions at the expense of more fundamental individual characteristics 

such as motivations and abilities mirrors a problem long existing in organizational social 

networks studies 98 , that is, how to combine agency with network structure (Emirbayer & 

Goodwin 1994; Ibarra et al. 2005; Kilduff & Krackhardt 1994; Kilduff et al. 2006; Srivastava & 

Gulati 2014; Stevenson & Greenberg 2000). The lack of appropriate theoretical and technical 

approaches might be the primary reason why this problem has not yet been thoroughly solved. 

The current study contributed in both aspects. Theoretically this study followed Gidden’s 

structuration theory (1984), which states that structure shapes agency and the resultant actions 

while is subsequently affected by those actions. Accordingly, the theoretical framework of this 

study highlighted iterative mutual impacts between the macro interaction network and individual 

members’ problem-solving behaviors. Recently Srivastava and Gulati (2014) proposed an 

theoretical framework based on the same logic, but they took the local perspective of a single 

constrained actor who exercises agency. The global network, which includes multiple actors as 

well as their relations and interactions, often has characteristics that cannot be reduced to 

individual actors. The current study was about the global network and it applied Complex 

Adaptive System (CAS) theories, which attribute irreducible system characteristics to the micro 

interactions of system components. Thus, the simulated organization was constructed as a 

complex adaptive social system and organizational members’ knowledge exchanges as micro 

interactions inside the system. Besides interaction, two other CAS mechanisms – selection and 

variation – are also critical for theorizing the preceding mutual influences. They were 

                                                           
 
98 The strong version of formalistic network sociology posits motivation as the effect of network structure (e.g., Burt 
1992: 32-34). 
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implemented as embedded and random knowledge exchanges respectively in the model. For 

simplicity purpose, the model attributed individual heterogeneity to pure chance (Kossinets & 

Watts 2006), but it can easily incorporate more complex and substantial sources of micro 

variations, such as intentional or strategic adaptations of individual actors, as will be discussed in 

Section 5.3. 

 

Technically, studying the micro-macro mutual influences needs finding the connections between 

emergent macro patterns and micro interaction. Since the influences are iterative and evolving, 

we also need to take time into account. Agent-based modeling as a research method was created 

to analyze the dynamic process of emergence. This study’s agent-based model implemented a 

stochastic network generating process usually found in network formation models (Jackson 2010; 

Toivonen et al. 2009). During this process, one or more predefined micro mechanisms are 

executed with certain probabilities at each time step. The resultant micro structural changes 

accumulate at the macro level to “generate” the network topology. The process lasts until the 

generated network topology exhibits the structural patterns of interest. According to the current 

study’s earlier results, organizational performances can be improved by accommodating all three 

collaborative behaviors. The stochastic characteristic of this study’s model thus suggests that 

synchrony is not required for such a mechanism; the three behaviors do not have to coexist all 

the time in the problem-solving process. Neither is behavioral consistency required. As long as 

there is a mix of independent workers and knowledge exchangers in the organization, 

organizational performances had no substantial difference whether or not there was a group of 

individuals who consistently chose knowledge exchange over independent knowledge creation 

(Result 4 in Table 4). Thus, this study provides a micro-level, informal structure-based 
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demonstration of the contextual approach to organizational ambidexterity (Gibson & Birkinshaw 

2004): the macro interaction network emerging from organizational members’ problem-solving 

activities can enable and encourage individuals to divide their time between exploitative and 

exploratory activities in a way that leads to an organizational balance. The result also shed some 

light on the timing of switching between exploitation and exploration (Result 10 in Table 4), 

which is known to be important yet difficult to decide. More specifically, when problem 

complexity was low and there was a small group of frequent knowledge exchangers in the 

organization, the positive effect of encouraging random knowledge exchanges would be more 

observable in the short run than in the long run. The same effect would be more observable in the 

long run when problem complexity was high and all individual members were enthusiastic about 

exchanging knowledge. Previous studies on contextual ambidexterity are mostly about the role 

of formal structures and processes and have not been able to specify the underlying mechanisms 

or to provide concrete managerial advice (O'Reilly & Tushman 2013).  

 

The techniques used in the current study also allowed us to study endogeneity: given stable 

individual propensities, how does the macro structure’s impact on organizational performances 

change over time? It has been reported that the same form of individual social capital may have 

stronger, weaker, or even opposite effects over time (Baum et al. 2010; Gargiulo & Benassi 

1999; Soda et al. 2004), but little is known about the endogenous forces that drive these changes. 

The current study investigated endogenous forces by making established network ties decay at a 

certain rate whenever they were not being used for knowledge exchange. It turned out that there 

was an inverted-U relationship between tie decay rate and organizational performance (Result 5 

in Table 4), indicating that the emergent macro network both facilitates and constrains 
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organizational problem solving over time. This dual impact is consistent with the aforementioned 

role of “inefficient” knowledge dissemination in balancing exploitation and exploration. Over 

time the knowledge exchanges of organizational members improve the quantity or the quality of 

interpersonal social relations as knowledge channels, generating a macro interaction network 

increasingly efficient in knowledge dissemination. The decay of established network ties thus 

can slow down this process. As knowledge dissemination needs deceleration but not elimination, 

an intermediate rate of tie decay leads to the best organizational performances in the long run. 

Since the emergent macro structure was created and maintained by past knowledge exchanges, it 

records the history of organization learning. In this regard, the preceding result demonstrated the 

importance of organizational unlearning as paving the way for further organizational learning 

(Holan & Nelson 2004; Tsang & Zahra 2008). Given the current study’s context, unlearning can 

be seen as the devaluation of established social relations that are efficient knowledge exchange 

channels but stand in the way of obtaining new knowledge or recombining existing knowledge 

and therefore impede future improvement in organizational performances. Again, there is a 

question about what to unlearn and abandoning everything that has been learned is definitely not 

the answer. 

 

In practice, trying to adjust the decay rate of intra-organizational social relations may not be an 

effective management strategy. Leaving aside the feasibility issue, doing so will influence the 

macro structure’s negative and positive effects indistinguishably. It would be better is to identify 

and prohibit just the endogenous force responsible for the negative impact. Because the same 

rate of tie decay led to higher organizational performances when there were more embedded 

knowledge exchanges (Result 11 in Table 4), embedded knowledge exchanges are the micro-
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level origin of the emergent macro structure’s negative impact on organizational performances. 

When most organizational members preferred embedded knowledge exchange, the macro 

network displayed a strong tendency towards strengthening existing ties or forming ties inside 

existing clusters. Repeated knowledge exchanges with existing partners and the formation of 

transitivity circles made the knowledge flows in the network increasingly redundant. As a result, 

the problem-solving process would be hindered or even stopped. The accumulation of past 

embedded knowledge exchanges gradually “locked” the organization into a state when 

knowledge exchanges no longer contributed to problem solving. Since embedded knowledge 

exchanges were guided by tie strength (i.e., follow existing strong ties), tie decay would logically 

slow down the “locked-in” process and pave the way for knowledge recombination. Thus, there 

is no need to worry unless most organizational members are very fond of embedded knowledge 

exchanges. But if they are, how should managers intervene? Promoting random knowledge 

exchange might help, but there is no promise since individuals have a strong preference for 

embedded knowledge exchange. A possible solution is to remove or deactivate existing strong 

ties by, for example, reorganization or rotation (Scholl 2014), so that individual members can be 

somewhat freed from the knowledge clusters they are currently in. Purposive removal or 

deactivation of social relations has also been documented as inter-organizational strategies 

(Davis 2010; Mariotti & Delbridge 2012). This solution challenges the traditional view that 

organizations should preserve informal social connections especially the fast-decaying bridges 

(Burt 2002)99 by illustrating the idea of “creative destruction”100 – new things emerge from the 

demise of whatever existed before. 

                                                           
 
99 The fundamental proposition of social capital theory is that established social relations provide access to valuable 
resources such as information and knowledge. These resources are important for supporting action but costly to 
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5.2. Methodology-related Innovation: an Extended Network Topology  

 

The cross-level and dynamic view of the current study was implemented through an extended 

network topology, which differs from the network topology used in the previous studies in 

several noteworthy aspects (Table 8). First, the extended network was dynamic rather than static. 

The underlying assumption of a static network is that interpersonal knowledge exchanges rarely 

deviate from established network ties101 and even if they do, there are only temporary impacts on 

network topology. However, contemporary organizations provide abundant opportunities102 for 

their members to create new social relations and to continue exchanging knowledge with new 

contacts. Moreover, given today’s ever changing business environment, balancing organizational 

exploitation and exploration has become a continuous adaptive process. A potential avenue to 

studying this process is the evolution of the macro interaction network, which results from 

organizational members’ knowledge exploitation and exploring activities during problem solving. 

 
 
 

Table 8. Contributions of the current study in modeling an extended network topology  

Network topology in previous studies Network topology in the current study 
Static Dynamic 
Predefined Emergent 

                                                                                                                                                                                           
 
gather. Social relations, often established for other purposes, constitute channels that reduce the amount of time and 
investment required to gather these resources. 
100 This term was coined by Schumpeter (1942) to denote a "process of industrial mutation that incessantly 
revolutionizes the economic structure from within, incessantly destroying the old one, incessantly creating a new 
one." 
101In other words, once two organizational members exchange knowledge, they will always exchange knowledge 
with each other instead of with someone else. 
102such as project-based organizational structure, communities of practice, and Enterprise 2.0 
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Exogenous Endogenous 
Random Non-random & random 
Binary Weighted 
Interactions on the network all result from pure 
chance 

Some interactions are more frequent than 
others 

 

Second, the extended network is endogenous rather than exogenous. The macro informal 

structure is both the cause and the effect of organization members’ problem-solving activities, as 

indicated in Figure 1 in Chapter 1. Thus, it is important to model the endogenous forces that 

drive and coordinate micro activities, which collectively generate and change the macro network. 

In the real life, the endogenous forces can be random or non-random but in previous studies they 

were mostly simplified as random. For example, the inter-group ties in a hybrid network can be 

created either randomly, when strangers bumped into each other in a random place or event 

(Kossinets & Watts 2006), or non-randomly, when individuals from different groups meet via 

common contacts103 (Davis 1970; Holland & Leinhardt 1971, 1972; Rapoport 1953, 1957) or 

reach out to each other (Burt 1992; Granovetter 1973). However, in previous studies the hybrid 

network was defined as a randomly generated small-world network104 (Newman 2001a; Watts 

1999; Watts & Strogatz 1998) or its variant, which would have been of oversimplification 

regarding the context of this study. The endogenous mechanisms of the current study’s model 

has a “locking-in” effect, as shown in the results. Thus, the simulated problem-solving process 

was not a Markov process: an agent’s behavioral outcomes at any moment are not only affected 

by probability-based individual propensity but also depend on (the effective part of) a macro 

                                                           
 
103Structurally it turns a two-tie triad into a completely connected triad, a process known as triad closure. 
104In a small-world network, multiple dense groups of node are connected by a few inter-group ties that maintain 
global connectivity of the network. Therefore, the distance between any two nodes remains short; that is, any two 
nodes can reach each other through a small number of intermediaries. Previous studies generated the small-world 
network using or modifying Watts and Strogatz’s model (Watts 1999; Watts & Strogatz 1998) that creates inter-
group ties by randomly rewiring the ties of a same-size regular network. 
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interaction network gradually shaped by long-term interactions on the network (see Footnote 12). 

 

Third, the extended network topology was weighted, while in most of previous studies it was 

binary – the social interactions were treated as “presence” or “absence” without considering their 

strength. A binary network makes sense only when the effect of tie strength is negligible or can 

be substituted by other network structural features. However, in fact, tie strength plays a unique 

and irreplaceable role in interpersonal knowledge exchanges (Cross & Sproull 2004; Gabbay & 

Leenders 2002; Grabowicz et al. 2012; Hansen 1999; Kang & Kim 2010; Kossinets & Watts 

2006; Levin & Cross 2004; Reagans & McEvily 2003; Wei et al. 2011) and cannot be 

overlooked. Up to date, there is no standard way to model tie strength, as it is still an elusive 

concept with many theoretical dimensions and even more operational definitions (Gilbert & 

Karahalios 2009). In the extended network, tie strength increased with the number of interactions 

on the tie and decreased at a certain rate once there was no interaction on the tie. Thereby, ties 

change gradually with growth and decay stages rather than abruptly appear or disappear. More 

recent interactions contribute more to tie strength, so that the sustainability of a tie is positively 

related with the duration and the freshness of the tie, as reported by multiple empirical studies 

(Baum et al. 2010; Burt 2000a, 2002; McEvily et al. 2012; Raeder et al. 2011). As for the effect 

of tie strength, empirical evidence has shown that the upper bound of knowledge exchangeable 

between two agents per interaction increases with tie strength (Aral & Alstyne 2011) in a 

decreasing rate (Reagans & McEvily 2003). It has also been observed that weak ties tend to 

provide access to novel knowledge (Granovetter 1973; Hansen 1999) whereas strong ties 

facilitate the exchange of complex knowledge (Aral & Alstyne 2011; Reagans & McEvily 2003). 
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The current study’s model integrated all these effects105. 

 

Fourth, in previous studies, the heterogeneity of interactions on the network in terms of 

frequency and partner of knowledge exchange was usually ignored. It was assumed that each 

agent exchanges knowledge in the same frequency with all partners being equally available. 

However, in the real life, only a few individuals are active in social interactions while the 

majority are not (Eckmann et al. 2004; Krackhardt 1990; Moran & Ghoshal 1996; Rybski et al. 

2010); an individual interacts with some of her contacts more frequently than with others (Barrat 

& Cattuto 2013; Gabbay & Leenders 2002; Rybski et al. 2010; Song et al. 2012; Srivastava & 

Gulati 2014). Thus, human interactions, initiated by a specific individual or between two specific 

individuals, tend to occur in bursts within short periods of time followed by long periods of 

inactivity. Borrowing ideas from some earlier work (Jo et al. 2011; Karsai et al. 2013), the 

burstiness of interactions were integrated into the model as a result of individual agents’ 

decision-making processes106 (Karsai et al. 2012; Krackhardt 1990; Min et al. 2009; Moran & 

Ghoshal 1996; Oliveira & Vazquez 2009; Stehlé et al. 2010; Wu et al. 2010; Zhao & Bianconi 

2011), which is more realistic than those in previous studies. 

 

                                                           
 
105 For parsimony purpose, the strong and weak tie effects were implemented based on the fact that tie strength and 
knowledge exchange outcomes are both affected by the frequency of interactions on the tie: strong ties facilitate 
knowledge exchange because frequent interactions produce similar knowledge bases, while weak ties bring in new 
knowledge because two connected agents interact only occasionally. 
106For each individual, interacting with someone or no one is described as a Type-A or B task respectively. Each 
Type-A task has a priority value indicating the individual’s propensity for interacting with a specific other, which 
modelers can tune to reflect their research purposes. At each time step, an individual first chooses between Type-A 
and B tasks. If it is the former, the individual will either pick a Type-A task with the highest priority or a random 
Type-A task regardless of its priority. This process filters high priority tasks rapidly through the priority list, while 
forcing long inactive periods on low priority tasks. 
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5.3. Limitations and Future Work 

 

Despite aforementioned advantages, the current study has some limitations that may lead to 

future extensions. The major limitation is that the findings came from computer simulation rather 

than real organizations. Regarding the research topic of this study, two discrepancies between a 

real organization and the simulated organizational environment used in this study are noteworthy. 

For one thing, this study focused on the micro interactions for knowledge exchange purpose only, 

while interpersonal interactions in a real organization have various ends and they all impact the 

emergence and dynamics of informal organizational structure. For another, this study was 

concerned with a self-organizing process devoid of central control or any kind of top-down 

interventions, while complete self-organization of organizational members does not exist in real 

organizations. That being said, computer modeling and simulation are not only suitable but also 

crucial for the current study. On the one hand, this study attempts to synthesize multiple vaguely 

related theories, some of which are underdeveloped 107, was well supported by the inherent 

precision and flexibility of modeling and simulation108. On the other hand, simulated data are 

more precise than empirical data on the dynamics and evolution of organizational social 

                                                           
 
107 Underdeveloped theories are characterized by a few weakly conceptualized constructs, vaguely understood 
processes, modest empirical grounding, and/or rough theoretical logic (Davis et al. 2007).   
108 For a computational model to run, every aspect of the model – inputs, outputs, assumptions, and processes in 
which outputs are derived from inputs under the regulation of assumptions – must be well specified. Thus, 
translating an underdeveloped theory into (part of) a computational model enhances the accuracy and internal 
validity of that theory (Davis et al. 2007; Taber & Timpone 1996). On the other hand, computational models are 
flexible in their ability to represent a variety of behaviors and contextual settings. Using computational models, we 
can construct new problems, collate isolated processes, and modify prior assumptions. More importantly, all these 
efforts can be formalized as testable hypotheses that incorporate existing theories with the modeler’s ideas 
(Hummon & Fararo 1995). 
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networks109. The influential factors and testable hypotheses revealed by simulated experiments 

then shed light on and set up directions for future empirical studies. 

 

To better understand model behavior and capture essential aspects of the research problem, the 

complexity of this study’s model was intentionally kept to the minimum level, thus leaving 

substantial room for extension. For starter, it would be useful to incorporate other influential 

factors, such as personnel turnover and environmental turbulence. The current model assumed 

that the same group of organizational members conducted parallel problem solving. To introduce 

personnel turnover, we can have each individual agent leave the organization at each time step 

with certain probability and have vacant positions filled by new agents with randomly assigned 

knowledge. The current model also assumed that the organization faced a single problem, which 

represents a static organizational environment. To introduce environmental turbulence, we can 

reassign the performance score of each individual solution with certain probability every certain 

time steps110. Another potential extension is to advance the current design of agent behaviors to 

make them more realistic (and more complex). For example, in the current model individual 

propensities for whether and with whom to exchange knowledge are fixed. A more realistic 
                                                           
 
109 There are multiple ways to collect longitudinal data of real organizational social networks, primary methods 
including survey (questionnaire or interview), observation, and experiments. When using observation, researchers 
often need to compromise on the number of observations (Corten & Buskens 2010), the number of time points 
(Lazer 2001), or the depth of observation (Moody et al. 2005). In the end there may not be enough information to 
make significant inference. Computational simulation allows researchers to track the variation of any key measures 
for any time duration (theoretically). Self-reported social-network data (i.e., data collected from surveys) may 
systematically deviate from the reality due to cognitive limitations, illusions, and irrationality of human beings 
(Bernard et al. 1984; Krackhardt 1987), especially when the  social network is informal (Marsden 1990). Simulation 
data do not have this problem. Real network experiments more or less “manipulate” their human subjects (e.g., 
planting rumor), who may react by altering their behaviors in various unpredictable ways, making experimental 
results incomparable. In simulated experiments, however, researchers can simply erase the memory of artificial 
agents and run them anew. Besides primary network data sources, researchers also use secondary sources, such as 
key informants and proxies of interactions – email records, membership lists, and so on (Aral & Alstyne 2011). 
Unfortunately the lack of precision is still a problem: the former source suffers from the same data distortion as 
network survey. The latter may not indicate real social relations and there tends to be a large amount of noise. 
110 The period of time should be long enough to allow sufficient adaptation of the informal interaction network. 
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design is for agents to change their propensities based on the outcomes of their behaviors (e.g., 

how well their solutions are improved). Finally, by integrating general modeling frameworks 

such as the NK space and the network topology, the current study’s model can be applied (with 

modifications) to other research problems that involve self-organization. 

 

The analysis on this study’s model is also limited and expandable. An immediate extension is to 

bring in network analysis. Since the model can easily produce detailed network data at every 

time step, we can visualize and analyze the extended network topology and its evolution during 

the problem-solving process. Previous studies measured the hybrid network topology using the 

characteristic statistics of a small-world structure111 (Watts & Strogatz 1998). We can observe 

the temporal changes of these statistics under different experimental conditions using plots 

similar to Figure 23. We can also investigate these statistics’ relationships with organizational 

problem-solving performance and the primary parameters of the agent-based model. Moreover, 

recent progresses in capturing the structural and temporal characteristics of community structures 

in a network (Abell et al. 2008) provide advanced analysis techniques for studying the evolution 

of a hybrid network topology. 

 

5.4. Conclusion 

 

                                                           
 
111 There are two primary statistics. One statistic is the average local clustering coefficient that measures the extent 
of clustering in a network – the probability that two nodes are connected increases with the number of their common 
neighbors. The other statistic is the average shortest path length (also known as characteristic path length or average 
geodesic distance) that measures the extent of separation in a network. It is the mean of shortest-path lengths over all 
node pairs. 
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In the face of highly diversified and discontinuous problems in their external environments, more 

and more organizations try to improve their problem-solving performances by harnessing 

individual members’ autonomous independent or collaborative problem-solving activities, such 

as independent knowledge creation and knowledge exchange. These individual behaviors can 

generally be featured as exploitative or exploratory. An organizational-level balance of 

exploitation and exploration has been considered crucial for organizational performances (March 

1991). In terms of solving external problems, this balance means a trade-off between (a) rapidly 

disseminating knowledge to improve organizational problem-solving performances in the short 

run and (b) enduringly maintaining knowledge diversity to guarantee organizational problem-

solving performances in the long run (Lazer & Friedman 2007). Temporally good solutions 

obtained in the problem-solving process should be disseminated to the entire organization, yet in 

an “inefficient” manner, so that the exploitation of these solutions will not stifle the exploration 

of new ideas that may lead to better solutions in the future. 

 

Since the rate of organization-wide knowledge dissemination is the collective outcome of 

interpersonal knowledge exchanges, which are fundamentally social interactions, a properly 

formed macro interaction structure may support “inefficient” knowledge dissemination and 

benefit organizational problem-solving performances. Indeed, researchers have found that a 

hybrid macro network (with both closure and brokerage structures) shows the preceding effect 

(Fang et al. 2010; Lazer & Friedman 2007). Notably, this finding was obtained by assuming that 

the network was predefined and static 112  during problem solving, and that organizational 

members followed the network precisely to exchange knowledge. These rigid assumptions are 

                                                           
 
112 The network topology is unchanged. 
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appropriate only when the macro interaction structure is formal structure and the interpersonal 

knowledge exchanges are formally regulated. The current study focused on organizational 

members’ autonomous problem-solving behaviors such as choosing whether and with whom to 

exchange knowledge. These behaviors are less affected by formal structure than by informal 

interaction structure that is emergent, subject to change during problem solving, and thus better 

represented by a dynamic network. Moreover, since the macro structure is both the medium and 

the outcome of micro behaviors (Giddens 1984), the network is supposed to coevolve with 

organizational members’ problem-solving behaviors. Given the impact of such a network, how 

would individuals’ problem-solving behaviors collectively impact organizational problem-

solving performances? Under what conditions would the organization achieve the best long-run 

performance, that is, organizational members’ autonomous problem-solving behaviors self-

organize into a collective balance?  

 

The current study tackled these questions using computer simulation and in particular agent-

based modeling (ABM). ABM has been widely used to study the often unexpected collective 

outcomes of individual behaviors. These outcomes are difficult to predict because they usually 

contain additional complexity resulting from the interaction of individual behaviors, that is, they 

are usually more than the aggregation of individual behaviors. ABM allows to investigate the 

collective phenomena of interest as emergent patterns of a dynamic system that has multiple 

agents interacting with one another based on predefined rules in a predefined environment 

(Gilbert 2008). It thus provides a way to connect the collective outcomes with the attributes 

and/or behavioral rules of individual agents. In the current study, an organization was modeled as 

a dynamic system and organizational members as agents in the system. Individual agents solved 
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the same problem in parallel and interacted with one another via a macro network to exchange 

solutions from time to time during the process. The organizational performance at a specific time 

was measured by the average score of all individual solutions at that time, which was determined 

using an NK model (Kauffman 1993).  

 

The specific design of this model drew on existing theories, modeling results, and empirical 

evidence. The overarching hypothesis was that the longer the emergent network maintains a 

hybrid topology during the problem solving process, the better the organizational performance 

would be in the long run. Accordingly, certain micro mechanisms that would impact the genesis 

and maintenance of a hybrid network were identified and integrated into the model, as well as 

contingent factors such as problem complexity. At each time step, an individual agent has a 

tendency to deal with the problem by independently creating knowledge or exchanging 

knowledge with familiar or random others. A knowledge exchange may be self-initiated or 

requested by another agent and the result is influenced by how much knowledge both parties 

have already shared and how well they learn from the difference. Thus, individual performances 

were jointly affected by individual motivations and abilities (stochastically) as well as 

endogenous and exogenous opportunities. Exogenous opportunities were presented by chance. 

Endogenous opportunities were associated with individual agents’ positions in the macro 

network, which changed over time as a result of individual agents’ problem-solving activities on 

the network and the decay of established but unused ties. Drawing on complex adaptive system 

(CAS) theories, an iterative micro-macro feedback loop was implemented to support the 

coevolution of the macro interaction network and individual agents’ problem-solving behaviors.  
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In the model, each micro mechanism of interest was associated with one or more model 

parameters, whose main and interaction effects on model outputs (i.e., temporal organizational 

problem-solving performance) were examined through computer simulation experiments. To 

handle the nonlinear relationships between model inputs and outputs, the experiments followed 

Latin Hypercube design and the data were analyzed using Multivariate Adaptive Regression 

Splines (MARS). The results not only confirmed previously identified factors to organizational 

problem-solving performances, such as time, problem complexity, and individual members’ 

independent knowledge creating skills, but also revealed new factors only visible from a multi-

level and dynamic perspective, such as individual members’ collaborative problem solving 

related characteristics and the impacts of past knowledge exchange interactions. According to the 

major findings, an organization has the best problem-solving performances in the long run when 

all three individual problem-solving behaviors – self learning, embedded knowledge exchange, 

and random knowledge exchange – are present in proportion to one another during the problem-

solving process. That said, they do not have to coexist each time or alternate but can be decided 

by organizational members independently. Because of the gradual “lock-in” effect of embedded 

knowledge exchange, sufficiently but not extremely fast tie decay contributes to organizational 

performances by reducing the influences of past knowledge exchanges but not jeopardizing the 

existence of the emergent macro structure. Organizational performances are positively related 

with organizational members’ collaborative problem-solving abilities, but has an invert-U 

relationship with their independent problem-solving abilities. The number of organizational 

members has a diminishing return on organizational performances. 
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Thus, the current study extended previous findings on “inefficient” knowledge dissemination and 

the balancing power of a hybrid network to a dynamic and self-organized context and therefore 

provided a richer picture for researchers and practitioners. Theoretically, the current study adds 

to the literature of organizational ambidexterity, organizational social capital, and organizational 

social networks. Methodological, the agent-based model developed in this study is more realistic 

than previous models and can benefit future studies. Despite these contributions, future work is 

still needed to better understand and extend the model and to empirically test the findings in a 

real organizational environment. 
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APPENDICE 
 

Appendix A: Pseudo–Code Description of the Agent-based Model 
 

1. Main Procedure 
 
INITIALIZATION  
READ model parameter values from an external file 

GET the nk space and initial individual solutions from external files 

WHILE the number of agents < orgSize 

Randomly SELECT an initial solution without replacement 

CALL anOrgMember.initialize with actDist and the selected initial condition 

ENDWHILE 

CREATE an empty network and randomly place each agent on a network node 

EXECUTION PER TIME STEP  
REPEAT  

Randomly SELECT anOrgMember without replacement 

IF anOrgMember.Idle is TRUE THEN  

DETERMINE anOrgMember.ActType with anOrgMember.ActRate and randLink 

CALL anOrgMember.step 

ENDIF  

UNTIL all agents have been called 

CALCULATE and OUTPUT avgScore 

REPEAT 

Randomly SELECT anOrgMember without replacement 

SET anOrgMember.Idle to FALSE 

UNTIL all agents have been processed 

UPDATE the network with decayRate and wtGain 
 
2. Definition of an agent: the OrgMember class 
 
VARIABLES / ATTRIBUTES 

• ActRate: a continuous value with a power distribution on [0,1] 

• CurrentSln: a binary vector of 20 dimensions representing problem solution 

• NewSln: same as above (for knowledge exchange) 

• ActType: a categorical value from {selfLearn, randomExchange, closeExchange} 



129 
 

• Idle: a Boolean variable indicating whether the agent is currently occupied  

 

METHODS / BEHAVIORS 
FUNCTION initialize(actDist, anInitialSln) 

SET this.CurrentSln to anInitialSln 

SET this.NewSln to this.CurrentSln  

DETERMINE this.ActType with actDist 

ENDFUNCTION 
 

FUNCTION step 

IF this.Idle is FALSE THEN 

RETURN 

 ENDIF 

 CASE this.ActType OF 

 “selfLearn”:  

                        CALL this.selfLearn 

                             BREAK OUT 

 “closeExchange”: 

                            IF current agent has at least one neighbor in the network THEN  

                                CALL this.closeExchange 

                                 BREAK OUT 

 ELSE 

 CONTINUE TO “randomExchange” 

 ENDIF 

 “randomExchange”:  

                                CALL this.randomExchange 

                                BREAK OUT 

 ENDCASE  

ENDFUNCTION 

 

FUNCTION selfLearn 

 FOR i = 1 to innoRange 

 Randomly SELECT a solution dimension d 

 SET this.NewSln[d] to its opposite value (0 to 1 or vice versa) 

 ENDFOR 

 CALL this.updateSolution 

ENDFUNCTION 
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FUNCTION closeExchange 

SET neighborList  GET the current agent’s direct and indirect neighbors in the network 

CALCULATE the current agent’s local constraint with each agent in neighborList 

SET partner  the agent with whom the current agent has the highest local constraint 

IF partner.Idle is TRUE AND partner.ActType is NOT “selfLearn” THEN 

 SET scoreA  CALCULATE the score of this.CurrentSln 

 SET scoreB  CALCULATE the score of partner.CurrenSln 

 IF scoreA ≥ scoreB THEN 

   this.exchangeKnowledge (this, partner) 

 ELSE 

   this.exchangeKnowledge (parnter, this) 

   ENDIF 

ENDIF 

ENDFUNCTION 

 

FUNCTION randomExchange 

SET partner GET another random agent 

IF partner.Idle is TRUE AND partner.ActType is NOT “selfLearn” THEN 

             SET scoreA  CALCULATE the score of this.CurrentSln 

      SET scoreB  CALCULATE the score of partner.CurrenSln 

      IF scoreA ≥ scoreB THEN 

            this.exchangeKnowledge (this, partner) 

      ELSE 

                   this.exchangeKnowledge (parnter, this) 

      ENDIF 

ENDIF 

ENDFUNCTION 

 

FUNCTION exchangeKnowledge (firstOrgMember, secondOrgMember) 

SET firstOrgMember.Idle to FALSE 

SET secondOrgMember.Idle to FALSE 

IF a network tie exists between firstOrgMember and secondOrgMember THEN 

               INCREASE tie strength based on wtGain and decayRate 

       ELSE 

               CREATE a tie between firstOrgMember and secondOrgMember with wtGain 

ENDIF 
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       CALCULATE bandwidth based on current strength of the above tie 

       DETERMINE the max number of exchangeable solution dimensions with bandwidth 

SET exchangeDimList  Randomly SELECT that number of solution dimensions 

FOR each dimension d in exchangeDimList 

         IF firstOrgMember.CurrentSln[d] ≠ secondOrgMember.CurrentSln[d] THEN 

               SET firstOrgMember.NewSln[d] to secondOrgMember.CurrentSln[d] with learnErr 
         ENDIF 

ENDFOR 

       CALL firstOrgMember.updateSolution 

       FOR each dimension d in exchangeDimList 

 IF firstOrgMember.CurrentSln[d] ≠ secondOrgMember.CurrentSln[d] THEN 

      SET secondOrgMember.NewSln[d] to firstOrgMember.CurrentSln[d] with learnErr 

         ENDIF 

ENDFOR 

       CALL secondOrgMember.updateSolution 

ENDFUNCTION 

 

FUNCTION updateSolution 

SET newScore  CALCULATE the score of this.NewSln 

SET currentScore  CALCULATE the score of this.CurrentSln 

IF newScore > currentScore THEN 

SET this.CurrentSln to this.NewSln 

ENDIF 

ENDFUNCTION 
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Appendix B: Latin hypercube sampling (LHS) and sample set used in this study 
 

This study used S = 300 LHS samples by varying d = 6 model parameters. Table A1 shows the entire 

LHS sample set. The sampled values of each parameter are summarized in Table A2 and their 

correlation matrix is given in Figure A2.  

 
Table A9. The complete LHS sample set 

designPt actDist randLink wtGain decayRate learnErr innoRange 
1 1.585 0.178 0.1628 0.5958 0.418 3 
2 1.825 0.602 1.3712 0.5642 0.875 2 
3 2.785 0.022 0.4432 0.9508 0.842 4 
4 1.975 0.042 2.6955 0.7792 0.275 5 
5 0.035 0.458 0.7235 0.6892 0.845 5 
6 0.415 0.815 0.5495 0.7558 0.385 4 
7 2.975 0.215 1.5742 0.9225 0.048 5 
8 0.405 0.525 1.1875 0.5992 0.572 2 
9 0.905 0.395 0.1822 0.5808 0.095 5 

10 1.705 0.835 1.3905 0.6692 0.542 1 
11 1.215 0.338 0.1338 0.8692 0.732 1 
12 1.445 0.898 2.2798 0.6058 0.295 2 
13 2.285 0.662 0.5978 0.6292 0.885 4 
14 2.505 0.138 2.5698 0.7392 0.565 4 
15 2.155 0.038 1.2165 0.6258 0.785 1 
16 1.015 0.085 0.1532 0.5208 0.718 1 
17 2.425 0.378 0.3948 0.5058 0.608 3 
18 2.855 0.168 2.5312 0.7592 0.398 4 
19 2.275 0.765 1.4582 0.6375 0.352 2 
20 0.325 0.782 0.4045 0.9292 0.858 1 
21 2.595 0.345 0.6462 0.8275 0.865 5 
22 2.935 0.792 2.4635 0.8675 0.838 5 
23 1.575 0.518 2.1252 0.6608 0.025 2 
24 2.875 0.735 1.1972 0.8258 0.722 3 
25 0.625 0.548 2.9468 0.6492 0.145 5 
26 1.905 0.985 1.3132 0.5425 0.702 4 
27 2.095 0.788 0.7138 0.6208 0.768 4 
28 1.155 0.728 1.2745 0.6225 0.882 3 
29 2.465 0.948 1.0425 0.9775 0.685 1 
30 0.085 0.978 1.8062 0.5008 0.938 1 
31 2.105 0.945 1.3325 0.9692 0.432 4 
32 0.265 0.725 0.2305 0.8592 0.825 4 
33 0.935 0.425 2.2605 0.7708 0.112 3 
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designPt actDist randLink wtGain decayRate learnErr innoRange 
34 0.475 0.435 2.7148 0.7525 0.098 5 
35 2.685 0.428 0.2015 0.6808 0.435 3 
36 1.925 0.295 2.1832 0.8392 0.312 5 
37 1.775 0.568 0.2208 0.9675 0.085 1 
38 2.915 0.405 2.9275 0.7908 0.518 1 
39 2.535 0.615 1.7385 0.8408 0.255 1 
40 2.385 0.132 1.0232 0.7208 0.212 4 
41 2.985 0.055 2.1155 0.6458 0.968 3 
42 1.095 0.445 2.3475 0.9825 0.358 5 
43 0.155 0.415 0.4238 0.7225 0.575 2 
44 0.075 0.398 2.4442 0.8808 0.218 2 
45 0.605 0.262 2.2122 0.5942 0.952 5 
46 2.765 0.352 2.1058 0.9842 0.725 2 
47 2.025 0.832 2.8018 0.6592 0.728 4 
48 1.865 0.198 1.9608 0.9342 0.392 3 
49 2.835 0.382 2.0575 0.8942 0.655 4 
50 0.855 0.182 0.2788 0.5758 0.562 3 
51 0.465 0.422 1.7675 0.8358 0.848 3 
52 1.285 0.855 0.3368 0.5792 0.052 1 
53 1.735 0.515 0.3658 0.9425 0.755 3 
54 0.275 0.088 0.6268 0.9858 0.332 1 
55 0.365 0.608 1.6225 0.6008 0.238 2 
56 1.625 0.252 0.8588 0.9992 0.665 4 
57 2.705 0.875 0.6945 0.8025 0.368 4 
58 2.215 0.148 2.7632 0.5608 0.832 4 
59 2.295 0.332 2.7922 0.5708 0.552 3 
60 1.335 0.502 0.9845 0.9542 0.568 2 
61 1.195 0.638 2.6278 0.9458 0.402 3 
62 1.715 0.015 1.4678 0.7875 0.168 2 
63 0.545 0.885 1.0715 0.5092 0.915 4 
64 1.535 0.048 2.4152 0.5875 0.638 2 
65 0.985 0.122 0.5302 0.5775 0.038 3 
66 2.775 0.335 2.6665 0.7292 0.378 4 
67 1.245 0.675 0.4335 0.9442 0.812 2 
68 1.655 0.008 2.0768 0.6125 0.815 1 
69 0.025 0.472 1.4195 0.8658 0.652 4 
70 1.005 0.202 2.5795 0.6642 0.302 3 
71 0.165 0.118 2.2025 0.9275 0.165 3 
72 2.745 0.305 0.1242 0.6175 0.452 2 
73 1.795 0.532 2.8405 0.5725 0.458 2 
74 0.755 0.045 2.1445 0.9708 0.918 5 
75 1.665 0.802 1.5452 0.9092 0.888 1 
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designPt actDist randLink wtGain decayRate learnErr innoRange 
76 1.305 0.688 1.0908 0.5525 0.282 3 
77 2.735 0.625 2.1928 0.8008 0.508 5 
78 2.905 0.068 0.1048 0.5375 0.522 5 
79 2.695 0.715 2.0188 0.7075 0.372 5 
80 2.755 0.292 2.9952 0.8542 0.395 5 
81 0.045 0.545 1.2455 0.6342 0.792 1 
82 1.225 0.595 0.9362 0.5658 0.408 5 
83 1.505 0.528 1.9512 0.5242 0.088 3 
84 0.815 0.125 1.4098 0.6508 0.628 4 
85 2.715 0.868 2.8985 0.6625 0.005 1 
86 2.625 0.658 0.6172 0.6992 0.325 4 
87 0.335 0.825 2.6858 0.7892 0.472 1 
88 2.605 0.818 0.7042 0.5675 0.598 5 
89 0.745 0.592 0.3078 0.6158 0.925 2 
90 0.615 0.222 1.1682 0.6042 0.548 1 
91 2.085 0.925 0.7912 0.5892 0.878 2 
92 2.645 0.718 0.5205 0.8425 0.258 1 
93 0.575 0.628 1.0618 0.7508 0.208 2 
94 1.135 0.535 1.6032 0.5625 0.248 5 
95 1.435 0.538 2.7052 0.7158 0.278 5 
96 0.345 0.418 2.2702 0.7008 0.625 2 
97 0.635 0.738 2.7245 0.5742 0.582 3 
98 0.955 0.695 2.5602 0.5258 0.805 5 
99 0.975 0.812 1.6515 0.9058 0.955 5 
100 0.395 0.115 0.9748 0.6575 0.182 4 
101 1.415 0.002 2.8695 0.8058 0.032 4 
102 0.515 0.018 2.4248 0.5592 0.782 2 
103 0.995 0.212 2.2218 0.9558 0.855 2 
104 0.065 0.655 2.0865 0.8242 0.132 5 
105 2.455 0.965 0.7428 0.9892 0.712 5 
106 0.145 0.475 0.8202 0.9192 0.945 2 
107 0.425 0.448 2.3088 0.6025 0.288 2 
108 0.485 0.152 0.8685 0.8758 0.742 4 
109 1.265 0.932 1.6128 0.7658 0.532 4 
110 1.755 0.365 2.2508 0.6925 0.068 3 
111 0.535 0.968 2.7342 0.5308 0.775 5 
112 1.315 0.432 2.0382 0.5925 0.105 3 
113 2.005 0.705 1.6708 0.5458 0.992 1 
114 2.415 0.318 0.9168 0.6108 0.682 4 
115 0.595 0.742 1.7578 0.5358 0.758 1 
116 0.845 0.888 1.1585 0.7675 0.065 3 
117 1.815 0.408 1.7095 0.5692 0.405 5 
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designPt actDist randLink wtGain decayRate learnErr innoRange 
118 2.805 0.902 0.9652 0.9008 0.215 4 
119 1.165 0.228 0.7622 0.6825 0.012 5 
120 2.165 0.952 0.7332 0.5542 0.695 1 
121 1.545 0.342 1.5355 0.9608 0.648 1 
122 0.725 0.635 1.5935 0.7175 0.892 3 
123 1.185 0.158 0.4528 0.6708 0.082 5 
124 0.175 0.972 1.0522 0.5108 0.375 5 
125 1.175 0.328 0.6075 0.8292 0.185 1 
126 2.635 0.098 1.2842 0.9942 0.428 5 
127 2.375 0.752 2.4732 0.7542 0.502 2 
128 1.565 0.808 1.5838 0.6192 0.958 1 
129 1.345 0.078 2.6762 0.8825 0.262 1 
130 1.295 0.915 1.5162 0.9875 0.078 2 
131 1.145 0.988 2.9855 0.8875 0.055 4 
132 2.335 0.275 1.8158 0.9575 0.998 4 
133 2.525 0.912 0.6365 0.6942 0.138 5 
134 0.205 0.698 1.8642 0.6775 0.222 3 
135 2.055 0.165 1.5645 0.6975 0.135 3 
136 0.685 0.865 0.7525 0.9392 0.412 4 
137 0.005 0.358 0.3272 0.9108 0.448 5 
138 2.185 0.488 0.1435 0.9042 0.355 1 
139 1.035 0.385 2.4345 0.8608 0.492 3 
140 1.785 0.065 1.2648 0.6875 0.692 1 
141 0.315 0.955 2.6568 0.9958 0.178 1 
142 0.785 0.908 2.3572 0.6275 0.975 1 
143 2.925 0.702 1.1005 0.7692 0.528 5 
144 1.745 0.375 0.8492 0.5975 0.018 2 
145 0.735 0.918 1.8835 0.7342 0.008 1 
146 2.485 0.402 1.4002 0.8925 0.808 3 
147 2.015 0.682 1.4775 0.7958 0.612 1 
148 2.895 0.778 1.6322 0.8092 0.868 4 
149 0.795 0.218 1.7965 0.7425 0.765 4 
150 0.245 0.452 2.9565 0.8792 0.545 3 
151 1.835 0.562 1.8932 0.5175 0.252 5 
152 1.845 0.092 2.4055 0.6908 0.525 2 
153 0.945 0.012 1.3035 0.8575 0.142 2 
154 1.045 0.225 2.8502 0.7042 0.912 3 
155 2.325 0.482 0.6752 0.5042 0.382 5 
156 0.185 0.355 1.1392 0.7275 0.045 4 
157 2.815 0.748 1.2552 0.6858 0.798 1 
158 0.375 0.192 1.7868 0.6842 0.162 2 
159 0.115 0.315 0.4818 0.5842 0.748 5 
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designPt actDist randLink wtGain decayRate learnErr innoRange 
160 1.765 0.285 1.9318 0.6092 0.175 3 
161 0.285 0.755 0.9555 0.7842 0.942 3 
162 0.305 0.882 0.8395 0.7108 0.198 3 
163 1.605 0.258 1.1778 0.6142 0.485 3 
164 2.135 0.575 2.6472 0.8342 0.988 4 
165 2.725 0.998 1.5258 0.8108 0.272 1 
166 2.345 0.145 2.7728 0.9142 0.298 4 
167 1.875 0.845 2.3378 0.8142 0.995 3 
168 2.245 0.062 2.9662 0.7442 0.228 2 
169 2.065 0.272 0.5592 0.8725 0.795 2 
170 1.635 0.322 1.1102 0.7058 0.555 2 
171 2.145 0.245 2.2315 0.7192 0.698 2 
172 0.655 0.598 0.2692 0.9808 0.595 5 
173 1.885 0.142 2.8115 0.6725 0.195 4 
174 1.105 0.412 2.0962 0.7408 0.362 2 
175 2.575 0.268 0.8878 0.7375 0.148 1 
176 2.615 0.828 2.0092 0.7325 0.778 5 
177 1.555 0.288 0.3175 0.6325 0.125 3 
178 1.955 0.618 1.0812 0.5408 0.365 4 
179 0.665 0.878 1.6998 0.9642 0.488 1 
180 1.615 0.282 1.1295 0.8908 0.622 3 
181 0.525 0.578 2.8888 0.8708 0.735 1 
182 2.495 0.872 2.7535 0.5158 0.422 4 
183 0.455 0.442 1.2262 0.7242 0.498 4 
184 2.655 0.645 2.0478 0.9125 0.118 2 
185 1.205 0.498 1.6805 0.7775 0.445 3 
186 0.645 0.905 2.5215 0.7092 0.232 2 
187 1.805 0.858 0.8298 0.5392 0.738 1 
188 1.595 0.938 2.6375 0.9758 0.982 4 
189 2.885 0.235 1.6902 0.6442 0.172 5 
190 0.925 0.058 2.3862 0.9175 0.705 2 
191 2.965 0.892 2.9178 0.7758 0.002 2 
192 0.355 0.588 2.5988 0.8175 0.895 4 
193 2.585 0.958 2.4925 0.5125 0.108 4 
194 0.135 0.392 0.5688 0.9658 0.658 5 
195 2.075 0.072 1.4485 0.6675 0.592 5 
196 2.675 0.082 2.8598 0.7125 0.902 1 
197 2.435 0.648 0.2595 0.7942 0.538 1 
198 1.425 0.775 0.3755 0.8525 0.328 4 
199 0.055 0.678 2.6182 0.7808 0.965 3 
200 1.675 0.188 2.1348 0.5142 0.662 4 
201 1.465 0.995 0.7718 0.5075 0.242 3 



137 
 

designPt actDist randLink wtGain decayRate learnErr innoRange 
202 0.565 0.685 2.1542 0.8775 0.822 3 
203 0.295 0.848 0.9458 0.9358 0.102 5 
204 1.995 0.632 0.2498 0.6075 0.668 4 
205 1.355 0.665 2.5022 0.9475 0.772 4 
206 0.385 0.468 2.3668 0.7742 0.338 2 
207 1.125 0.362 2.4538 0.5558 0.802 2 
208 1.115 0.302 2.2895 0.5292 0.632 3 
209 2.315 0.112 1.1198 0.9792 0.152 2 
210 2.845 0.478 1.7772 0.8892 0.908 1 
211 1.645 0.232 0.9072 0.5275 0.058 5 
212 1.985 0.672 0.4142 0.7625 0.115 4 
213 1.945 0.298 0.5012 0.6658 0.335 1 
214 2.795 0.758 0.3562 0.7642 0.932 3 
215 1.375 0.348 1.4968 0.5025 0.922 1 
216 0.125 0.485 2.7825 0.5225 0.898 5 
217 2.565 0.585 0.2402 0.8992 0.455 4 
218 1.965 0.668 0.8105 0.6392 0.465 5 
219 1.365 0.768 2.8308 0.6558 0.495 4 
220 2.555 0.558 1.8545 0.5342 0.305 3 
221 2.865 0.522 1.2068 0.9975 0.935 2 
222 0.775 0.942 2.3765 0.9625 0.515 4 
223 2.445 0.462 0.9942 0.9908 0.415 4 
224 2.235 0.238 1.9028 0.6542 0.075 1 
225 0.865 0.935 0.6558 0.6475 0.292 3 
226 1.255 0.388 1.8255 0.7308 0.308 2 
227 1.455 0.722 0.6655 0.7975 0.615 2 
228 1.325 0.692 0.1918 0.8375 0.862 2 
229 1.475 0.032 1.8738 0.8158 0.588 4 
230 0.435 0.572 0.4625 0.5492 0.558 5 
231 1.055 0.555 1.3808 0.5575 0.752 2 
232 0.915 0.508 2.8212 0.6742 0.342 1 
233 0.675 0.795 1.9705 0.5858 0.708 1 
234 2.665 0.928 2.8792 0.8442 0.852 5 
235 1.085 0.308 1.9898 0.5442 0.972 4 
236 0.255 0.208 1.8352 0.9025 0.225 2 
237 2.195 0.265 0.5882 0.8842 0.318 1 
238 0.555 0.005 0.6848 0.9742 0.642 3 
239 0.875 0.732 1.4872 0.7925 0.188 2 
240 0.445 0.095 1.9802 0.9242 0.245 2 
241 0.495 0.135 1.2938 0.7825 0.235 3 
242 2.255 0.822 1.3615 0.9075 0.905 3 
243 1.495 0.785 1.4388 0.6792 0.438 5 
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designPt actDist randLink wtGain decayRate learnErr innoRange 
244 0.805 0.465 0.7815 0.9375 0.388 4 
245 0.715 0.582 1.3422 0.7142 0.345 1 
246 1.895 0.195 2.3282 0.6408 0.482 2 
247 1.395 0.762 0.8782 0.8625 0.872 1 
248 2.475 0.035 0.8975 0.8458 0.602 3 
249 0.965 0.622 1.3228 0.6958 0.062 1 
250 2.175 0.495 1.6418 0.9408 0.835 5 
251 1.915 0.798 0.3852 0.7575 0.122 2 
252 2.825 0.922 2.1638 0.9308 0.035 3 
253 1.275 0.155 1.4292 0.8958 0.962 5 
254 1.855 0.185 0.5398 0.7475 0.675 2 
255 1.235 0.325 1.8448 0.8642 0.605 1 
256 0.195 0.438 1.0038 0.7492 0.128 2 
257 2.265 0.105 1.0328 0.7258 0.578 5 
258 1.515 0.605 1.9995 0.9492 0.072 3 
259 0.765 0.372 2.9082 0.8858 0.468 1 
260 1.025 0.895 1.1488 0.8325 0.688 3 
261 0.095 0.992 2.4828 0.6758 0.462 5 
262 0.835 0.028 2.5408 0.5825 0.788 2 
263 2.405 0.712 2.0285 0.7025 0.015 4 
264 0.885 0.492 1.7192 0.9208 0.268 4 
265 0.215 0.708 1.7288 0.8558 0.678 4 
266 2.955 0.838 2.5505 0.5508 0.022 1 
267 2.125 0.242 1.2358 0.9325 0.985 3 
268 1.685 0.075 2.7438 0.6525 0.672 2 
269 1.725 0.455 0.3465 0.8975 0.155 4 
270 0.895 0.642 1.5548 0.8225 0.205 2 
271 2.945 0.745 0.9265 0.5908 0.475 3 
272 2.995 0.512 1.6612 0.8508 0.645 4 
273 0.015 0.278 2.0672 0.9725 0.042 2 
274 0.825 0.975 2.1735 0.9925 0.158 5 
275 1.385 0.962 2.5118 0.8042 0.512 5 
276 2.035 0.842 2.2992 0.6358 0.478 3 
277 0.585 0.128 1.7482 0.8492 0.818 3 
278 2.355 0.542 1.9125 0.9258 0.192 3 
279 2.395 0.102 0.5108 0.7608 0.978 2 
280 2.225 0.025 1.9222 0.7992 0.762 1 
281 2.515 0.862 2.2412 0.7858 0.715 3 
282 1.525 0.505 1.9415 0.9592 0.322 5 
283 2.205 0.172 0.4915 0.8075 0.028 4 
284 0.695 0.852 0.4722 0.8192 0.285 1 
285 1.075 0.052 0.8008 0.8475 0.425 2 
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designPt actDist randLink wtGain decayRate learnErr innoRange 
286 1.485 0.552 0.2885 0.6242 0.442 3 
287 2.115 0.175 0.5785 0.5192 0.202 1 
288 0.705 0.368 1.5065 0.8125 0.618 4 
289 1.405 0.612 1.3518 0.6425 0.635 3 
290 1.695 0.772 2.3185 0.8308 0.092 2 
291 2.045 0.982 0.2982 0.8208 0.315 1 
292 2.545 0.312 2.6085 0.5475 0.585 1 
293 0.235 0.162 0.1145 0.5325 0.828 5 
294 0.505 0.565 2.5892 0.8742 0.348 1 
295 0.225 0.652 0.2112 0.9525 0.745 3 
296 0.105 0.108 0.1725 0.7358 0.265 5 
297 1.935 0.205 2.9372 0.7725 0.505 5 
298 2.365 0.255 1.0135 0.7458 0.535 5 
299 2.305 0.805 2.9758 0.9158 0.948 5 
300 1.065 0.248 2.3958 0.6308 0.928 1 
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Table A10. Summary of model parameters varied in the LHS sample set 

Variable actDist randLink wtGain decayRate learnErr innoRange 

Minimum 0.005 0.001667 0.1048 0.5008 0.002 1 

1st Quartile 0.7525 0.250833 0.8274 0.6254 0.250833 2 

Median 1.5 0.5 1.55 0.75 0.5 3 

Mean 1.5 0.5 1.55 0.75 0.5 3 

3rd Quartile 2.2475 0.749167 2.2726 0.8746 0.749167 4 

Maximum 2.995 0.998333 2.9952 0.9992 0.998333 5 

 
 

 
Figure A29. The correlation matrix of model parameters varied in the LHS sample 

  



141 
 

Appendix C: Design Matrices for two crossed design 

 
Note that in the first crossed design, Group 2 sub-design is crossed with Group 1 LHS design differently 

when actType = A than when actType = B/C/D; they are presented in the following two separate tables. 

 

Table A11. A partial crossed design when actType = A 

 

LHS design 
point

actDist randLink wtGain decayRate learnErr innoRange
Design 
point

orgSize space_k actType

1 10 1.705 0.835 1.3905 0.669167 0.54167 1 1 50 1 A
2 ... ... ... ... ... ... 1 2 100 1 A
3 ... ... ... ... ... ... 1 3 200 1 A
4 ... ... ... ... ... ... 1 4 50 5 A
5 ... ... ... ... ... ... 1 5 100 5 A
6 ... ... ... ... ... ... 1 6 200 5 A
7 11 1.215 0.338333 0.133833 0.869167 0.731667 1 1 50 1 A
8 ... ... ... ... ... ... 1 2 100 1 A
9 ... ... ... ... ... ... 1 3 200 1 A
10 ... ... ... ... ... ... 1 4 50 5 A
11 ... ... ... ... ... ... 1 5 100 5 A
12 ... ... ... ... ... ... 1 6 200 5 A
... ... ... ... ... ... ... ... ... ... ... ...

355 300 1.065 0.248333 2.395833 0.630833 0.928333 1 1 50 1 A
356 ... ... ... ... ... ... 1 2 100 1 A
357 ... ... ... ... ... ... 1 3 200 1 A
358 ... ... ... ... ... ... 1 4 50 5 A
359 ... ... ... ... ... ... 1 5 100 5 A
360 ... ... ... ... ... ... 1 6 200 5 A
361 2 1.825 0.601667 1.371167 0.564167 0.875 2 1 50 1 A
362 ... ... ... ... ... ... 2 2 100 1 A
363 ... ... ... ... ... ... 2 3 200 1 A
364 ... ... ... ... ... ... 2 4 50 5 A
365 ... ... ... ... ... ... 2 5 100 5 A
366 ... ... ... ... ... ... 2 6 200 5 A
... ... ... ... ... ... ... ... ... ... ... ...

1440 4 1.975 0.041667 2.6955 0.779167 0.275 5 1 50 1 A
1441 ... ... ... ... ... ... 5 2 100 1 A
1442 ... ... ... ... ... ... 5 3 200 1 A
1443 ... ... ... ... ... ... 5 4 50 5 A
1444 ... ... ... ... ... ... 5 5 100 5 A
1445 ... ... ... ... ... ... 5 6 200 5 A

... ... ... ... ... ... ... ... ... ... ... ...
1795 299 2.305 0.805 2.975833 0.915833 0.948333 5 1 50 1 A
1796 ... ... ... ... ... ... 5 2 100 1 A
1797 ... ... ... ... ... ... 5 3 200 1 A
1798 ... ... ... ... ... ... 5 4 50 5 A
1799 ... ... ... ... ... ... 5 5 100 5 A
1800 ... ... ... ... ... ... 5 6 200 5 A

Crossed 
design 
point

Group 1 (LHS sample) Group 2
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Table A12. A partial crossed design when actType = B, C, and D 

 

  

LHS design 
point

actDist randLink wtGain decayRate learnErr innoRange
Design 
point

orgSize space_k actType

1 1 1.585 0.178333 0.162833 0.595833 0.418333 3 1 50 1 B
2 1 ... ... ... ... ... ... 2 100 1 B
3 1 ... ... ... ... ... ... 3 200 1 B
4 1 ... ... ... ... ... ... 4 50 5 B
5 1 ... ... ... ... ... ... 5 100 5 B
6 1 ... ... ... ... ... ... 6 200 5 B
7 1 ... ... ... ... ... ... 7 50 1 C
8 1 ... ... ... ... ... ... 8 100 1 C
9 1 ... ... ... ... ... ... 9 200 1 C
10 1 ... ... ... ... ... ... 10 50 5 C
11 1 ... ... ... ... ... ... 11 100 5 C
12 1 ... ... ... ... ... ... 12 200 5 C
13 1 ... ... ... ... ... ... 13 50 1 D
14 1 ... ... ... ... ... ... 14 100 1 D
15 1 ... ... ... ... ... ... 15 200 1 D
16 1 ... ... ... ... ... ... 16 50 5 D
17 1 ... ... ... ... ... ... 17 100 5 D
18 1 ... ... ... ... ... ... 18 200 5 D
19 2 1.825 0.601667 1.371167 0.564167 0.875 2 1 50 1 B
20 2 ... ... ... ... ... ... 2 100 1 B
21 2 ... ... ... ... ... ... 3 200 1 B
22 2 ... ... ... ... ... ... 4 50 5 B
23 2 ... ... ... ... ... ... 5 100 5 B
24 2 ... ... ... ... ... ... 6 200 5 B
... ... ... ... ... ... ... ... ... ... ... ...

5395 300 1.065 0.248333 2.395833 0.630833 0.928333 1 1 50 1 D
5396 300 ... ... ... ... ... ... 2 100 1 D
5397 300 ... ... ... ... ... ... 3 200 1 D
5398 300 ... ... ... ... ... ... 4 50 5 D
5399 300 ... ... ... ... ... ... 5 100 5 D
5400 300 ... ... ... ... ... ... 6 200 5 D

Crossed 
design 
point

Group 1 (LHS sample) Group 2
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Table A13. A crossed design incorporating different initial conditions 

 

  

LHS design 
point

actDist randLink wtGain decayRate learnErr innoRange
Design 
point

nkSpace space_k

1 1 1.585 0.178333 0.162833 0.595833 0.418333 3 1 1 1
2 1 ... ... ... ... ... ... 2 2 1
3 1 ... ... ... ... ... ... 3 3 1
4 1 ... ... ... ... ... ... 4 4 1
5 1 ... ... ... ... ... ... 5 5 1
6 1 ... ... ... ... ... ... 6 1 5
7 1 ... ... ... ... ... ... 7 2 5
8 1 ... ... ... ... ... ... 8 3 5
9 1 ... ... ... ... ... ... 9 4 5
10 1 ... ... ... ... ... ... 10 5 5
11 2 1 1 1
12 2 ... ... ... ... ... ... 2 2 1
13 2 ... ... ... ... ... ... 3 3 1
14 2 ... ... ... ... ... ... 4 4 1
15 2 ... ... ... ... ... ... 5 5 1
... ... ... ... ... ... ... ... ... ... ...

2991 300 1.065 0.248333 2.395833 0.630833 0.928333 1 1 1 1
2992 300 ... ... ... ... ... ... 2 2 1
2993 300 ... ... ... ... ... ... 3 3 1
2994 300 ... ... ... ... ... ... 4 4 1
2995 300 ... ... ... ... ... ... 5 5 1
2996 300 ... ... ... ... ... ... 6 1 5
2997 300 ... ... ... ... ... ... 7 2 5
2998 300 ... ... ... ... ... ... 8 3 5
2999 300 ... ... ... ... ... ... 9 4 5
3000 300 ... ... ... ... ... ... 10 5 5

Crossed 
design 
point

Group 1 (LHS sample) Group 2
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Appendix D: A procedure for determining the number of replicate runs 

 

Provided the same model inputs, stochastic model still produces different outputs per simulation run. To 

obtain representative model outputs, a common approach is to perform replicate runs and identify central 

tendency from the results (e.g., mean or median). But it is not always clear how many replicate runs are 

necessary for this purpose. In addition, while the number of replications should be large enough to ensure 

desired accuracy, we cannot afford too many replications due to often limited time and computing 

resources. This study drew on a special procedure for determining the number of replicate runs for 

simulation experiments (Read et al. 2012). Basically, the procedure quantifies the extent to which the 

statistical consistency of model-output distributions changes with the number of samples comprising the 

distributions. Since each sample is obtained from a replicate run, the result sheds light on the appropriate 

number of replicate runs.  

 

The procedure unfolds as follows, illustrated by its application in the current study. As we know, more 

replicate runs (larger sample size) mitigate the effects of inherent stochasticity on the outputs of 

stochastic models and produce increasingly identical distributions of model outputs. Thus, the procedure 

starts by picking a sequence of increasing sample sizes, one of which will become the final choice. We 

selected 9 candidates – from 50 to 450 (inclusive) with an interval of 50. Then multiple sets of simulation 

results are collected for each possible sample size 113; each set contains that number of results. As 

recommended by the original article (Read et al. 2012), we collected 20 sets of results for each sample 

size: 20 sets each containing the results of 50 replicate runs, another 20 sets each containing the results 

of 100 replicate runs, right through to 20 sets each containing the results of 450 replicate runs. Then each 

sample size is analyzed by (i) generating the median of the target model output for each of the 20 sets, 

and (ii) comparing the medians obtained from Set 2 to Set 20 with the median obtained from Set 1 using 

the Vargha-Delaney A-Test (Vargha & Delaney 2000), a non-parametric effect size test indicating the 

statistical consistency of two distributions. Finally, a plot is created summarizing the A-Test scores of all 
                                                           
 
113 The same set of model inputs is used for all simulation runs. It is assumed that changing these values has no 
impact on the effects of stochastic elements. 
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sample sizes. It helps researchers identify the smallest sample size that produces an acceptably low level 

of variations (i.e., aleatory uncertainty) in simulation results114. The number of replicate runs should be no 

smaller than that sample size. 

 

The core of Vargha-Delaney A-Test is a measure of stochastic superiority (denoted by A). The stochastic 

superiority of population 1 over population 2 is defined as  

 

where X is a variable of at least ordinal scale defined for population 1 and 2 (denoted by X1 and X2 

respectively). A12 represents the probability that a randomly chosen sample taken from population 1 is 

larger than a randomly chosen sample from population 2. A12 = 1 − A21, both in the range of [0, 1]. If X 

has the same distribution in the two populations, A12 = A21 = 0.5. The two populations are said to be 

stochastically equal to each other with respect to X. A value of A above 0.71 or below 0.29 (i.e., 1 – 0.71) 

indicates a large difference between two populations. Since A measures the magnitude of effect rather 

than statistical significance, the detected difference is conceptually significant. Table A4 lists some A-

measure values and corresponding effect size. 

 

Table A14. Effect size indicated by the A measure (Vargha & Delaney 2000) 

Effect size Large Medium Small None Small Medium Large 
A measure 0.29 0.36 0.44 0.50 0.56 0.64 0.71 

 

The Vargha-Delaney A-Test has several features that make it desirable for this study. First of all, it is an 

effect size test, which tends to provide more meaningful results than a statistical significance test in the 

context of computer simulation experiments115. Secondly, it is agnostic to the underlying distribution and 

the variance heterogeneity of the test data, so no strict assumptions on the experimental results (e.g., 

                                                           
 
114The level of variation is measured by the maximal or median A-Test score between the 1st set of results and the 
remaining 19 sets. 
115Computer simulation experiments often generate hundreds and thousands of samples; with so many samples, even 
a conceptually meaningless difference can turn out to be statistically significant. 

)(5.0)( 212112 XXPXXPA >+>=
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normal and independent distribution) are needed. Lastly, the A measure is easy to interpret, efficient to 

compute, and applicable for both discrete and continuous values. 

 

Following the procedure, we got two plots (Figure A2 and Figure A3) that summarize the maximal and 

median A-Test scores for all potential sample sizes (50 to 450 with a constant interval of 50) at multiple 

time steps (Tick 2, 10, 50, 100, 150, and 200) based on model output avgScore. In both plots, the 

horizontal dash lines represent the boundaries for levels of differences. They are drawn at the values of 

0.56 (small difference), 0.64 (medium difference), and 0.71 (large difference). As shown Figure A2 and 

Figure A3, a sample size of 300 (i.e., 300 replicate runs) is required to reduce the amount of aleatory 

uncertainty to an effect size less than “small” for model outputs at various time steps. 

 
Figure A30. Maximal A-Test Scores for each Sample Size at Multiple Time Steps 
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Figure A31. Median A-Test Scores for each Sample Size at Multiple Time Steps 

 



148 
 

Appendix E. Descriptive and inferential analysis for discrete model parameters 

 
Figure A32: Relations between discrete model parameters and model outcomes 
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Table A15. Results of inferential analysis for discrete model parameters116 

 
 

                                                           
 
116H is the statistic of the KW test; v1 and v2 indicate a variable’s two value levels that are being compared; |r| is the 
absolute value of effect size; p is the p value; the symbol * indicates a p value < 0.001, while larger p values are 
directly provided (sometimes in parentheses). 

v1 v2 p |r| v1 v2 p |r| v1 v2 p |r| v1 v2 p |r|
50 2755.5* 1 5 * 0.7* 127.6* A B * 0.06* 16.4* 50 100 0.002 0.06* 193.0* 1 2 1

A C * 0.19* 50 200 0.02 0.05(0.002) 1 3 * 0.12*
A D 0.12 0.04(0.019) 100 200 1 1 4 * 0.15*
B C * 0.11* 1 5 * 0.18*
B D 1 2 3 * 0.12*
C D * 0.13* 2 4 * 0.17*

2 5 * 0.19*
3 4 * 0.09*
3 5 * 0.11*
4 5 0.04 0.05(0.004)

150 2859.0* 1 5 * 0.7* 108.1* A B * 0.08* 15.4* 50 100 * 0.06* 149.6* 1 2 * 0.10*
A C * 0.08* 50 200 0.01 0.05(0.002) 1 3 1
A D * 0.11* 100 200 1 1 4 0.002 0.07*
B C * 0.13* 1 5 * 0.12*
B D 1 2 3 * 0.13*
C D * 0.14* 2 4 * 0.17*

2 5 * 0.19*
3 4 * 0.08*
3 5 * 0.10*
4 5 0.06 0.05(0.006)

300 2969.2* 1 5 * 0.7* 183.7* A B * 0.13* 16.0* 50 100 * 0.006* 241.9* 1 2 * 0.26*
A C 0.01 0.05(0.002) 50 200 0.007 0.05(0.002) 1 3 * 0.15*
A D * 0.18* 100 200 1 1 4 0.01 0.06*
B C * 0.15* 1 5 1
B D 0.27 2 3 * 0.14*
C D * 0.17* 2 4 * 0.18*

2 5 * 0.20*
3 4 * 0.08*
3 5 * 0.11*
4 5 0.04 0.05(0.004)

500 2986.3* 1 5 * 0.7* 246.7* A B * 0.15* 14.6* 50 100 0.001 0.06* 454.6* 1 2 * 0.36*
A C 0.001 0.06* 50 200 0.008 0.05(0.002) 1 3 * 0.28*
A D * 0.20* 100 200 1 1 4 * 0.19*
B C * 0.17* 1 5 * 0.13*
B D 0.01 0.05(0.002) 2 3 * 0.15*
C D * 0.20* 2 4 * 0.19*

2 5 * 0.21*
3 4 * 0.09*
3 5 * 0.13*
4 5 0.02 0.06(0.002)

800 2954.7* 1 5 * 0.7* 293.7* A B * 0.14* 13.4 50 100 0.002 0.06* 678.4* 1 2 * 0.42*
A C * 0.09* (0.001) 50 200 0.019 0.05(0.004) 1 3 * 0.36*
A D * 0.20* 100 200 1 1 4 * 0.30*
B C * 0.19* 1 5 * 0.24*
B D * 0.07* 2 3 * 0.14*
C D * 0.24* 2 4 * 0.19*

2 5 * 0.22*
3 4 * 0.09
3 5 * 0.14*
4 5 0.004 0.07*

1200 2916.1* 1 5 * 0.7* 328.6* A B * 0.12* 13.1 50 100 0.002 0.05* 821.2* 1 2 * 0.46*
A C * 0.12* (0.001) 50 200 0.02 0.05(0.006) 1 3 * 0.40*
A D * 0.18* 100 200 1 1 4 * 0.35*
B C * 0.21* 1 5 * 0.30*
B D * 0.08* 2 3 * 0.11*
C D * 0.26* 2 4 * 0.19*

2 5 * 0.22*
3 4 * 0.10*
3 5 * 0.14*
4 5 0.001 0.07*

Tick MW MW MW MW
innoRangeorgSizeactTypespace_k

KW (H) KW (H) KW (H) KW (H)
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Appendix F: The probability density functions of avgScore over time 
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Appendix G. MARS regression models on different subsets of the experimental results  

 
Table A16. MARS model II and the corresponding experimental conditions 

Experimental condition   
tick   100, 150, 200, 250, 300 
learnErr   <=0.15 
space_k   5 
actType   C  
Number of observations   4,500  
Number of independent variables   5  
Regression model  
Component Description Coefficient P value 
Intercept    0.483 < 0.0001 
BF1 max (0, Tick – 150)    0.001 < 0.0001 

BF2 max (0, 150 – Tick)  –0.002 < 0.0001 

BF3 orgSize = 100   0.076 < 0.0001 

BF4 orgSize = 200   0.066 < 0.0001 

BF5 max (0, randLink – 0.278)    0.398 < 0.0001 

BF6 max (0, 0.278 – randLink)  –1.354 < 0.0001 

BF7 max (0, randLink – 0.438)  –0.416 < 0.0001 

BF8 max (0, decayRate – 0.858)  –1.805 < 0.0001 

BF9 max (0, 0.858 – decayRate)  –0.224 < 0.0001 

BF10 BF1 * BF6 –0.001 < 0.0001 

BF11 BF2 * BF6   0.005 < 0.0001 

BF12 BF6 * max (0, wtGain – 0.907)  –0.037    0.0020 
BF13 BF6 * max (0, 0.907 – wtGain)    0.669 < 0.0001 

BF14 BF7 * BF8   4.173 < 0.0001 

BF15 BF8 * max (0, randLink – 0.922) –5.675    0.0070 
BF16 BF8 * max (0, 0.922 – randLink)   4.496 < 0.0001 
Goodness–of–fit  
GCV (Generalized Cross Validation)   0.000244  
GCV–Squared   0.985  
RSS (Residual Sum of Squares)   0.145  
R–Squared   0.987  
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Table A17. Descriptive analysis of the underlying subset of MARS-II and MARS-III117 

Variable randLink wtGain decayRate learnErr 

Minimum 0.001667 0.1048 0.5008 0.001667 

1st Quartile 0.230833 0.8274 0.6254 0.250833 

Median 0.500000 1.5500 0.7500 0.500000 

Mean 0.500000 1.5500 0.7500 0.500000 

3rd Quartile 0.749167 2.2726 0.8746 0.749167 

Maximum 0.998333 2.9952 0.9992 0.998333 

 

                                                           
 
117The descriptive analysis results of the two result subsets were identical 
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Table A18. MARS model III and the corresponding experimental conditions 
Experimental condition   
tick   100, 150, 200, 250, 300 
learnErr   <=0.15  
space_k   1 . 
actType   C  
Number of observations   4,500  
Number of independent variables   5  
Regression model  
Component Description Coefficient  P value 
Intercept    0.900 < 0.0001 
BF1 max (0, randLink – 0.215)    0.372 < 0.0001 

BF2 max (0, 0.215 –  randLink)  –1.150 < 0.0001 

BF3 max (0, decayRate –  0.771)  –0.092 < 0.0001 

BF4 max (0, 0.771 – decayRate)  –0.244 < 0.0001 

BF5 max (0, Tick – 150)    0.001 < 0.0001 

BF6 max (0, 150 – Tick)  –0.001 < 0.0001 

BF7 max (0, randLink – 0.518)  –0.471 < 0.0001 

BF8 BF2 * max (0, wtGain – 1.3)  –1.375 < 0.0001 

BF9 BF2 * max (0, 1.3 – wtGain)  –0.704    0.0010 
BF10 BF4 * max (0, randLink – 0.672)  –0.357    0.0040 
BF11 BF4 * max (0, 0.672 – randLink) –0.618 < 0.0001 

BF12 BF2 * max (0, Tick – 200) * max(0, 1.3 – wtGain)    0.007 < 0.0001 

BF13 BF2 * max (0, 200 – Tick) * max(0, 1.3 – wtGain)  –0.012 < 0.0001 

BF14 BF4 * max (0, 200 – Tick) * max(0, 0.672 –  randLink) –0.008 < 0.0001 

BF15 BF3 * max (0, randLink – 0.622)    0.729 < 0.0001 

BF16 BF3 * max (0, 0.622 – randLink)    1.349 < 0.0001 

BF17 BF2 * max (0, learnErr – 0.132)  –221.4 < 0.0001 

Goodness–of–fit  
GCV (Generalized Cross Validation) 0.000273  
GCV–Squared 0.990  
RSS (Residual Sum of Squares) 0.161  
R–Squared 0.991  
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Table A19. MARS model IV and the corresponding experimental conditions 

Experimental condition   
tick   100, 150, 200, 250, 300 
learnErr   <=0.15  
space_k   5  
actType   B  
Number of observations   4,500  
Number of independent variables   6  
Regression model  
Component Description Coefficient  P value 
Intercept    0.582 < 0.0001 
BF1 max (0, Tick – 200)    0.001 < 0.0001 

BF2 max (0, 200 – Tick)  –0.001 < 0.0001 

BF3 max (0, Tick – 150)  –0.001 < 0.0001 

BF4 max (0, randLink – 0.278)  –0.012 < 0.0001 

BF5 max (0, 0.278 – randLink)  –0.467 < 0.0001 

BF6 max (0, decayRate – 0.824)    0.175 < 0.0001 

BF7 max (0, 0.824 – decayRate)  –0.064 < 0.0001 

BF8 orgSize = 100   0.047 < 0.0001 

BF9 orgSize = 200   0.043 < 0.0001 

BF10 BF4 * max (0, actDist – 0.735)   0.013 < 0.0001 

BF11 BF4 * max (0, 0.735 – actDist) –0.188 < 0.0001 

BF12 BF7 * max (0, innoRange – 2)  –0.065 < 0.0001 

BF13 BF5 * max (0, decayRate –  0.831)    8.217 < 0.0001 

BF14 BF5 * max (0, 0.831 – decayRate)    0.461 < 0.0001 

BF15 BF3 * BF6 * max (0, 2 – innoRange)  –0.002 < 0.0001 

BF16 BF7 * max (0, 150 – Tick) * max(0, 2 –  innoRange)    0.001 < 0.0001 

Goodness–of–fit  
GCV (Generalized Cross Validation)   0.000118  
GCV–Squared   0.977  
RSS (Residual Sum of Squares)   0.070  
R–Squared   0.980  
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Table A20. Descriptive analysis of the underlying subset of MARS IV and MARS V118 

Variable actDist randLink wtGain decayRate learnErr innoRange 

Minimum 0.0050 0.001667 0.1048 0.5008 0.001667 1 

1st Quartile 0.7525 0.250833 0.8274 0.6254 0.250833 2 

Median 1.5000 0.500000 1.5500 0.7500 0.500000 3 

Mean 1.5000 0.500000 1.5500 0.7500 0.500000 3 

3rd Quartile 2.2475 0.749167 2.2726 0.8746 0.749167 4 

Maximum 2.9950 0.998333 2.9952 0.9992 0.998333 5 

 
  

                                                           
 
118 The descriptive analysis results of the two result subsets were identical 
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Table A21. MARS model V and the corresponding experimental conditions 
Experimental condition   
tick  100, 150, 200, 250, 300 
learnErr  <=0.15 
space_k   1 
actType   B 
Number of observations   4,500  
Number of independent variables   6  
Regression model  
Component Description Coefficient  P value 
Intercept    0.988 < 0.0001 

BF1 max (0, decayRate – 0.858)    0.147 < 0.0001 

BF2 max (0, 0.858 – decayRate)  –0.300 < 0.0001 

BF3 max (0, Tick – 150)    0.001 < 0.0001 

BF4 max (0, 150 – Tick)  –0.001 < 0.0001 

BF5 max (0, randLink – 0.365)  –0.042 < 0.0001 

BF6 max (0, 0.365 – randLink)  –0.496 < 0.0001 

BF7 max (0, actDist – 0.945)    0.011 < 0.0001 

BF8 max (0, 0.945 – actDist)  –0.052 < 0.0001 

BF9 max (0, innoRange – 2)  –0.003 < 0.0001 

BF10 max (0, 2 – innoRange)  –0.035 < 0.0001 

BF11 BF6 * max (0, actDist – 1.42)   0.254 < 0.0001 

BF12 BF6 * max (0, 1.42 – actDist)    0.410 < 0.0001 

BF13 BF6 * max (0, Tick – 200)    0.001 < 0.0001 

BF14 BF6 * max (0, 200 – Tick)  –0.002 < 0.0001 

BF15 BF3 * BF7 –0.001 < 0.0001 

BF16 BF4 * BF7   0.001 < 0.0001 

BF17 BF2 * max (0, 0.0383 –  learnErr)   4.082 < 0.0001 

BF18 BF2 * max (0, 200 – Tick) –0.001 < 0.0001 

Goodness–of–fit  
GCV (Generalized Cross Validation) 0.000134  
GCV–Squared 0.966  
RSS (Residual Sum of Squares) 0.078  
R–Squared 0.970  
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Table A22. Relative importance of the variables in terms of predicting organizational 
performance 

Experimental condition Variable Importance (–gcv) Importance (–rss) 

space_k = 5 randLink 100.0 100.0 

actType = C Tick   58.7   58.6 

 decayRate   46.7   46.5 

 orgSize   32.5   32.2 

 wtGain   32.5   32.2 

space_k = 1 randLink 100.0 100.0 

actType = C Tick   36.5   36.5 

 decayRate   36.5   36.5 

 wtGain   16.1   16.0 

 learnErr   15.4   15.3 

space_k = 5 Tick 100.0 100.0 

actType = B randLink   62.8   62.6 

 decayRate   54.8   54.6 

 orgSize   43.4   42.9 

 innoRange   43.4   42.9 

 actDist   31.0   30.6 

space_k = 1 decayRate 100.0 100.0 

actType = B randLink   83.3   83.0 

 Tick   66.1   65.8 

 actDist   43.2   42.9 

 innoRange   25.0   24.6 

 learnErr   15.8   15.5 
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Table A23. MARS model VI and the corresponding experimental conditions 

Experimental Condition  
tick 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 50, 

100, 150, …, 1,000 
actType B 
Number of observations119 90,000 
Number of independent variables 6 
Regression model    
Component Description Coefficient  P value 
Intercept    0.852 < 0.0001 
BF1 max (0, Tick – 150)   0.001 < 0.0001 

BF2 max (0, 150 – Tick) –0.004 < 0.0001 

BF3 space_k = 5 –0.370 < 0.0001 

BF4 nkSpace = 4 –0.045 < 0.0001 

BF5 nkSpace = 5 –0.042 < 0.0001 

BF6 max (0, decayRate – 0.814)   0.149 < 0.0001 

BF7 max (0, 0.814 – decayRate) –0.097 < 0.0001 

BF8 max (0, learnErr – 0.822) –0.849 < 0.0001 

BF9 max (0, 0.822 – learnErr)   0.234 < 0.0001 

BF10 max (0, Tick – 200)*BF3   0.001 < 0.0001 

BF11 max (0, 200 – Tick)*BF3   0.001 < 0.0001 

BF12 BF1 * max (0, learnErr – 0.978) –0.009 < 0.0001 

BF13 BF1 * max (0, 0.978 – learnErr) –0.001 < 0.0001 

BF14 BF1 * max (0, innoRange – 2) –0.001 < 0.0001 

BF15 BF1 * max (0, 2 – innoRange) –0.001 < 0.0001 

BF16 BF3 * (nkSpace = 2) –0.077 < 0.0001 

BF17 BF3 * (nkSpace = 4) –0.066 < 0.0001 
BF18 BF3 * max (0, 200–Tick)*max (0, learnErr–0.842)   0.003 < 0.0001 
BF19 BF3 * max (0, 200–Tick)*max (0, 0.842–learnErr) –0.001 < 0.0001 
Goodness-of-fit  
GCV (Generalized Cross Validation)   0.00481  
GCV-Squared   0.941  
RSS (Residual Sum of Squares)   433  
R-Squared   0.941  
 
  

                                                           
 
119The result set has 9,000 items: 1 (orgSize = 100) × 1 (actType = B) × 2 (space_k = 1 or 5) × 5 (nkSpace = 0, 1, 2, 
3, 4) × 300 (LHS design points) × 30 (tick = 1, 6, 11, 16, 21, 26, 31, 36, 50, 100, 150, …, 1,000). 
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Appendix H. Interactive effects of randLink and decayRate on the emergent network 

 

To better understand how decayRate affected avgScore independently and together with randLink, we 

conducted a new set of simulation experiments focusing on the emergent macro network. In the 

experimental design, the value ranges of decayRate and randLink were both from 0 to 1 with an 

increment of 0.25. Other model parameters were fixed: orgSize = 200, actType = C, space_k = 5, 

innoRange = 1, learnErr = 0.15, and wtGain = 1. Every experiment lasted for 800 ticks. We collected data 

from tick = 50 to tick = 800 with an interval of 10 ticks. Figure A5 to Figure A7 show the effects of 

decayRate on the macro network structure given different values of randLink. In these figures, every trend 

line correspond to a specific tick. The relations between decayRate and specific network statistics were 

consistent over different ticks in most cases. Accelerating the decay of infrequently used ties would 

eventually lead to a sparse network with weak ties and few clusters. However, increasing decayRate (yet 

remaining moderate) counterintuitively increased network density and this effect was more apparent 

when randLink was small, i.e., when knowledge exchanges tend to be embedded (Figure A5). 

Meanwhile, global clustering coefficient kept declining as decayRate increased (Figure A6), indicating 

that new ties did not contribute to cluster formation. Together these results suggest that increasing 

decayRate reduced the tendency for knowledge exchanges to happen between already connected 

individuals, a tendency that is stronger when randLink is smaller. Finally, the relationships between 

decayRate and avgScore revealed by this set of experiments (Figure A8) was generally consistent with 

earlier MARS results. On the one hand, moderate decayRate had a positive effect on avgScore while 

large decayRate negatively impacted avgScore. On the other hand, small randLink reinforced the positive 

effect and weakened the negative effect of decayRate. When randLink was smaller, the value range of 

decayRate that showed negative effects seemed to be narrower. 
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Figure A33: Relations between decayRate and network density given different randLink 

  

 
Figure A34: Relations between decayRate and global clustering coefficient120 

                                                           
 
120 Global clustering coefficient is a network statistic measuring the clustering extent of the entire network. It is 
defined as 3 * number of triangles in the network / number of paths of length 2. 
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Figure A35: Relations between decayRate and average tie strength 

 

 
Figure A36: Relations between decayRate and avgScore given randLink  
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Appendix I. Extreme condition tests and results 

 

To further verify the integrity of the computational model, the computer program was tested in several 

extreme conditions (Table A16). The results were presented in Figure A9 and Figure A10. 

Organizational performance avgScore 121  increased smoothly over time in each condition. The 

relationships between avgScore and primary model parameters, as reflected in these extreme conditions, 

were mostly consistent with the results of more sophisticatedly designed simulation experiments (Section 

4.1 in the main text). The performances were always better when the problem was less complex (space_k 

= 1). The performances were generally better when individual members solved problems by independent 

knowledge creation and knowledge exchange (actType = B) than by knowledge exchange only (actType 

= C). When actType = C, the organizational performance stopped improving while it was still low in half of 

the extreme conditions. The first condition (designPt = 1) represented the “lock-in” effect (State H in 

Figure 13): when (a) individuals kept exchanging knowledge with the same others (randLink = 0), (b) 

network tie decayed slowly (decayRate = 0.01), and (c) there were few mutations (learnErr = 0), the 

knowledge (or individual solutions) being exchanged soon became almost identical. As a result, no new 

solutions were created and organizational improvement stopped. While everything else remained the 

same but the mutation rate changed to extremely high (designPt = 2), organizational performances were 

low in the short run but high in the long run. This phenomenon has been observed in a previous static 

network based model (Lazer & Friedman 2007). The negative effect of high learnErr on short-term 

performances was also observed in several other extreme conditions (designPt = 4, 6, 8, 10, 14), 

comparing to corresponding conditions that only differ in learnErr (designPt = 3, 5, 7, 9, 13). When 

individual members all preferred random knowledge exchange (randLink = 1), the network soon became 

well connected with no closure structure (State C in Figure 13). On this type of networks, knowledge is 

efficiently disseminated and assimilated. Thus, the organizational performance leveled off at a low value 

(designPt = 9 – 15). However, there was an exception (designPt = 16) when used and unused ties were 

respectively strengthened and weakened in a high rate (wtGain = 3, decayRate = 1) and the mutation rate 

                                                           
 
121 The values presented in Figure A9 and Figure A10 are averaged across 50 replicate runs. 
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was high as well (learnErr). In this condition, the positive effect of learnErr on organizational performance 

(by increasing knowledge diversity) was reinforced by high wtGain, which made used ties stronger and 

therefore allowed for more different knowledge areas to be exchanged and then mutated. This interactive 

effect also explained why designPt = 61 (actType = B) had better performances than designPt = 63 while 

designPt = 53 had worse performances than designPt = 55. All in all, it can be concluded that the 

behaviors of the current study’s model continue to make sense at boundary or extreme conditions. 

 

Table A24. Extreme conditions122 

 designPt actDist randLink wtGain decayRate learnErr innoRange 
actType = B,  1 0.01 0 0.01 0.01 0 1 
space_k = 1 2 0.01 0 0.01 0.01 0 5 
and 5 3 0.01 0 0.01 0.01 1 1 
 4 0.01 0 0.01 0.01 1 5 
 5 0.01 0 0.01 1 0 1 
 6 0.01 0 0.01 1 0 5 
 7 0.01 0 0.01 1 1 1 
 8 0.01 0 0.01 1 1 5 
 9 0.01 0 3 0.01 0 1 
 10 0.01 0 3 0.01 0 5 
 11 0.01 0 3 0.01 1 1 
 12 0.01 0 3 0.01 1 5 
 13 0.01 0 3 1 0 1 
 14 0.01 0 3 1 0 5 
 15 0.01 0 3 1 1 1 
 16 0.01 0 3 1 1 5 
 17 0.01 1 0.01 0.01 0 1 
 18 0.01 1 0.01 0.01 0 5 
 19 0.01 1 0.01 0.01 1 1 
 20 0.01 1 0.01 0.01 1 5 
 21 0.01 1 0.01 1 0 1 
 22 0.01 1 0.01 1 0 5 
 23 0.01 1 0.01 1 1 1 
 24 0.01 1 0.01 1 1 5 
 25 0.01 1 3 0.01 0 1 
 26 0.01 1 3 0.01 0 5 
                                                           
 
122 When actType = C, all individual agents are willing to exchange knowledge and none of them will do 
independent knowledge creation. Thus, actDist and innoRange are no longer effective. 
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 designPt actDist randLink wtGain decayRate learnErr innoRange 
actType = B,  27 0.01 1 3 0.01 1 1 
space_k = 1 28 0.01 1 3 0.01 1 5 
and 5 29 0.01 1 3 1 0 1 
 30 0.01 1 3 1 0 5 
 31 0.01 1 3 1 1 1 
 32 0.01 1 3 1 1 5 
 33 3 0 0.01 0.01 0 1 
 34 3 0 0.01 0.01 0 5 
 35 3 0 0.01 0.01 1 1 
 36 3 0 0.01 0.01 1 5 
 37 3 0 0.01 1 0 1 
 38 3 0 0.01 1 0 5 
 39 3 0 0.01 1 1 1 
 40 3 0 0.01 1 1 5 
 41 3 0 3 0.01 0 1 
 42 3 0 3 0.01 0 5 
 43 3 0 3 0.01 1 1 
 44 3 0 3 0.01 1 5 
 45 3 0 3 1 0 1 
 46 3 0 3 1 0 5 
 47 3 0 3 1 1 1 
 48 3 0 3 1 1 5 
 49 3 1 0.01 0.01 0 1 
 50 3 1 0.01 0.01 0 5 
 51 3 1 0.01 0.01 1 1 
 52 3 1 0.01 0.01 1 5 
 53 3 1 0.01 1 0 1 
 54 3 1 0.01 1 0 5 
 55 3 1 0.01 1 1 1 
 56 3 1 0.01 1 1 5 
 57 3 1 3 0.01 0 1 
 58 3 1 3 0.01 0 5 
 59 3 1 3 0.01 1 1 
 60 3 1 3 0.01 1 5 
 61 3 1 3 1 0 1 
 62 3 1 3 1 0 5 
 63 3 1 3 1 1 1 
 64 3 1 3 1 1 5 
actType = C,  1 NA 0 0.01 0.01 0 NA 
space_k = 1 2 NA 0 0.01 0.01 0.9 NA 
and 5 3 NA 0 0.01 1 0 NA 
 4 NA 0 0.01 1 0.9 NA 
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 designPt actDist randLink wtGain decayRate learnErr innoRange 
actType = C,  5 NA 0 3 0.01 0 NA 
space_k = 1 6 NA 0 3 0.01 0.9 NA 
and 5 7 NA 0 3 1 0 NA 
 8 NA 0 3 1 0.9 NA 
 9 NA 1 0.01 0.01 0 NA 
 10 NA 1 0.01 0.01 0.9 NA 
 11 NA 1 0.01 1 0 NA 
 12 NA 1 0.01 1 0.9 NA 
 13 NA 1 3 0.01 0 NA 
 14 NA 1 3 0.01 0.9 NA 
 15 NA 1 3 1 0 NA 
 16 NA 1 3 1 0.9 NA 
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Figure A37: Changes in avgScore over time in different extreme conditions (actType = B) 
 



 
 

 
Figure A38: Changes in avgScore over time in different extreme conditions (actType = C) 
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